75. ro¢nik Matematické olympiady — 2025/2026
Resent ailoh krajského kola kategorie P

P-II-1 Sisyfos a balvany

Poduloha A

Inverze je dvojice (i,j) takova, ze i < j, ale H[i] > HJ[j]. Je zfejmé, Ze po-
sloupnost je usporddand (od nejmensiho prvku k nejvétsimu), pravé kdyz neobsa-
huje Zadné inverze. Posloupnost délky n miize obsahovat nejvyse n(n — 1)/2 inverzi
(k tomu dochézi, pokud jsou vSechny prvky riizné a sefazené v opacném poradi; pak
kazda dvojice indexti tvoii inverzi).

Kazda vyména provedena Sisyfem snizi pocet inverzi v poli H pfesné o jedna.
V kazdém kole se tedy pocet inverzi v poli H snizuje. Pocet kol, ve kterych Sisyfos
provede vyménu, proto miize byt maximalné roven poctu inverzi v poli H na zacatku.

Nékolik dalSich tvah

Sisyftiv postup vzdy na konci vytvori setfidéné pole (jeho algoritmus postup
se nazyva bublinkové tridénd): Pokud mame pole, které jesté neni sefazené, musi
existovat alespoii jeden index i takovy, ze H[i — 1] > HJi]. To v8ak znamen4, Ze
v nésledujicim kole Sisyfos provede alespoii jednu dal$i vyménu (nejpozdéji kdyz
dosdhne tohoto indexu 7). Proces proto muZe skonéit pouze tehdy, kdyz je celé pole
H setridéné.

Mizeme dokézat, ze kol dokonce nikdy nebude vice nez n: V prvnim kole do-

dajici jeho vaze.
Podiloha B

Prvky tézsi nez w rozdé€luji vstup na kratsi samostatné tseky. Je snadné si
predstavit, ze na kazdém z téchto tiseki bude Sisyfos postupné provadét piesné
stejné akce, jaké by provadél, kdyby existoval pouze tento tisek balvanti.

Staci tedy rozdeélit vstupni posloupnost H na tézké balvany a tseky lehkych

balvant. Tézké balvany nechdme na misté a kazdy tusek lehkjych balvant zv1ast
set¥idime. To miizeme provést s asovou slozitosti O(nlogn).

Podiloha C

Obdobné jako v poduiloze B jsou tuseky oddélené balvany vahy vétsi nez w
nezavislé, tuto podulohu tedy staci vytesit pro kazdy tsek zvIast a vratit maximum
z vysledki. Zaméfme se nyni na feseni pro jeden tsek; mizeme tedy predpokladat,
ze zadny prvek v poli H neni prilis tézky.

Pro kazdy balvan si také mizeme predpocitat pozici, na které skonci: Jedno-
duse pole setfidime (bez toho, Ze bychom prohazovali prvky se stejnou hodnotou)
a podivame se, kde se balvany na konci nachézi. To zvladneme v ¢ase O(nlogn),
ktery nam zabere tifidéni.

Uvazujme balvan b, ktery se na zac¢atku aktualniho kola nachézi na pozici p a
jehoz koncova pozice je k. Tvrdime, ze

(1) Pokud se balvan b nachézi ostfe napravo od své koncové pozice, tedy
p > k, pak se v tomto kole posune pfesné o jednu pozici doleva.

(2) Pokud se balvan b nachézi na své koncové pozici nebo nalevo od ni, tedy
p < k, pak na konci kola stale bude na pozici mensi nebo rovné k.

Proc¢ to plati? Podivejme se na situaci poté, co Sisyfos dorazil v tomto kole na
pozici p — 1 hned nalevo od balvanu b. Na tuto pozici dopfesouval pravé nejtézsi
balvan b’ z téch, které se od balvanu b nachazely nalevo. Pokud je b’ t&z8$i nez b,
prohodi ho s nim a k balvanu b se jiz nevrati, posune ho tedy o pravé jednu pozici
doleva; proto plati (1) i (2). Jinak jsou v8echny balvany nalevo od b nanejvys tak
nemtize byt ostfe napravo od své cilové pozice, a proto plati p < k. Od ted Sisyfos
balvan b bude presouvat pouze doprava. Pokud ho takto dopfesouva na pozici k,
nalevo od néj se v tomto okamziku nachazi k — 1 balvant, které jsou nanejvys tak
tézké, jako balvan b. Napravo od néj se tedy nachézi praveé ty balvany, jejichz koncova
pozice je alespon k£ + 1, a ty jsou alespon tak tézké jako balvan b. V nasledujicim
kroku tedy balvan b s balvanem na pozici k+ 1 neprohodi a balvan b skon¢i na pozici
k; proto plati (2).

Oznacme jako m maximum z rozdili pocatec¢nich a koncovych pozic balvant
(tento rozdil je kladny, pokud balvan za¢ind napravo od své koncové pozice, a zé-
porny, pokud zaéiné nalevo od ni). Nachdzi-li se tedy balvan na za¢atku napravo od
své cilové pozice k, nejprve se v kazdém kole pfesunuje o jednu pozici doleva, dokud
nedorazi na pozici k (to nastane nejpozdéji po m kolech) a poté se uz nedostane
zpét napravo od pozice k. Nachézi-li se na zac¢atku na pozici £ nebo nalevo od ni,
béhem celého postupu se nikdy nedostane napravo od pozice k.

Po m kolech je tedy kazdy balvan na své koncové pozici nebo nalevo od ni.
Snadno nahlédneme, Ze to je mozné pouze pokud jsou balvany setfidéné dle velikosti
a kazdy je presné na své koncové pozici. Postup tedy zabere pfesné m kol. Po urcéeni
koncovych pozic ndm uréeni m zabere pouze linedrni ¢as, ¢asova slozitost feseni tedy
je O(nlogn). Pamétova slozitost je O(n).

Nasledujici program fesi podilohy B a C vySe popsanym zptisobem.

Program (C++):

#include <algorithm>
#include <iostream>
#include <vector>

using namespace std;

int main() {
int n, w;
cin >> n >> w;
vector<int> H(n);
for (int &h : H) cin >> h;
H.push_back(w+1l); // zarazka

vector<int> vystup;
int zac = 0;
int doleva = 0; // o kolik nejvic doleva musime posunout néjakj balvan

while (zac < mn) {
// najdeme aktualni usek lehkjch balvanid
int kon=zac;
while (H[kon] <= w)
++kon;
// uspofadame si je, prifemZ si pamatujeme jejich po&ateé&ni pozice
vector< pair<int,int> > balvany;
for (int i=zac; i<kon; ++i)
balvany.push_back({ H[i], i });
sort(balvany.begin(), balvany.end());
// najdeme ten, ktery se posunul nejvic doleva
for (int i=zac; i<kon; ++i)
doleva = max(doleva, balvany[i-zac].second - i);
// vyplnime vystupni pole pro podilohu B
for (int i=zac; i<kon; ++i)
vystup.push_back(balvany[i-zac].first);
vystup.push_back(H[kon]);
zac = kon+1;

}
for (int i=0; i<n; ++i)

cout << vystup[i] << (i+1 == n ? "\n" : " ");
cout << "pocet kol: " << (doleva+l) << endl;
return 0O;

P-1I-2 Obdélnik

Pred c¢tenim tohoto vzorového FeSeni se doporucujeme sezndmit s pojmy a
algoritmy popsanymi zde: fittps://ksp.mjJ.cuni.cz/encyklopedie/geometrie)

V zadani jsme jiz vidéli, jak fesit pfipad, kdy vSechny body lezi na jedné pfimce.
Ve zbytku feseni proto miizeme predpokladat, ze tento specidlni piipad nenastane.

Hledéani feSeni muzeme jesté trochu zjednodusit nasledujicim tvahou: Vezmé-
me libovolny obdélnik, ktery mé vSechny dané body na svém obvodu. Pro kazdou
stranu zvlast zkontrolujeme, zda obsahuje néktery z danych bodt. Pokud ne, mtize-
me obdélnik zmensit tak, Ze tuto stranu posuneme bliZe k protilehlé strané, dokud
nenarazi na jeden ze zadanych bodu. Na konci tohoto procesu ziskdme obdélnik,
ktery nejenze obsahuje vSechny zadané body, ale také méa alespon jeden ze zadanych
bodu na kazdé ze svych stran. Sta¢i ndm tedy hledat pouze FeSeni spliujici tuto
vlastnost.

Pomalejsi FeSeni
Problém si muzeme vyrazné usnadnit tim, Zze najdeme konvexni obal vsech
danych bodt. Pokud existuje feseni, co mizeme Fici o tomto konvexnim obalu?

Na kazdé ze c¢tyr stran naseho obdélniku mame jeden nebo vice bodi. Vez-
méme si nejkratsi tsecku obsahujici vSechny tyto body (pokud je jen jeden, tato
usecka je trivialni a skldd4d se pouze z tohoto bodu). PovSimnéme si, Ze tato tisecka

3

https://ksp.mff.cuni.cz/encyklopedie/geometrie/

je nutné soucasti hranice konvexniho obalu. Jelikoz vSechny zadané body lezi na
hranici obdélnika, v8echny lezi na (alesponl) jedné z téchto &tyf tusecek. Konvexni
obal zadanych bodu je tedy roven konvexnimu obalu téchto ¢tyt usecek. Pokud si
tedy z kazdé takové tsecky vezmeme jeji krajni body, ziskdme vSechny vrcholy kon-
vexniho obalu. Z toho vyplyva, Ze konvexni obal bude nutné nejvyse osmithelnik.
Jelikoz mame navic zadano vice nez osm bodi, alespon jedna z netrividlnich tisecek
tvoricich hranici konvexniho obalu bude obsazena v jedné ze stran obdélniku.

Problém tedy mtzeme vyresit nasledovné: Najdeme konvexni obal vSech n za-
dangch bodt (to zvlddneme v ¢ase O(nlogn)). Pokud mé vice nez 8 vrcholu, hleda-
ny obdélnik neexistuje. Pokud néktery z danych bodt lezi uvnit¥ konvexniho obalu,
obdélnik také neexistuje. Ve zbyvajicich pripadech staci vyzkouset maximalné 8 pii-
padu volby tsecky, kterd lezi v jedné ze stran obdélniku. Poté uz je snadné zbylé
strany dopo¢itat (detaily viz v niZe popsaném vzorovém feseni).

Vzorové feSeni

Problém mutzeme také vyfesit v linedrnim cCase, aniz bychom explicitné kon-
struovali konvexni obal.

Zacnéme nasledujici tvahou: Vezméme libovolnych pét z danych n bodt. Pokud
vSechny lezi na obvodu obdélniku, pak podle Dirichletova principu musi existovat
(alespoit) dva z nich, které lezi na stejné strané. Prozkoumame tedy vSechny dvojice
A a B vybranych péti bodu. Pro kazdou z nich vyfesime jednodussi problém: bude-
me hledat obdélnik, ktery ma navic tu vlastnost, ze jedna z jeho stran lezi na primce
urcené témito dvéma body. Pokud méa néktery z téchto problémi feSeni, mame ta-
ké feseni ptivodniho problému. Naopak pokud zZadny z téchto tikolii nemé TeSeni,
hledany obdélnik jisté neexistuje.

Timto zpisobem vyzkousime pouze deset moznosti. Pokud otestujeme kazdou
moznost v linearnim cCase, ziskame celkové také linearni reseni.

Zbyvéa tedy popsat, jak nalézt obdélnik za dodatec¢ného predpokladu, Ze jedna
jeho strana lezi na pfimce AB. Nejprve ur¢ime, které ze zadanych bodu lezi na této
pfimce. To mtzeme udélat pomoci vektorového soucinu: Bod C' lezi na pfimce AB,
pokud je vektorovy soucin vektora AB a AC' nulovy.

7 bodt, které lezi na nasi pfimce, pak vybereme prvni a posledni. To mtizeme
provést pomoci skalarniho soucinu: hleddme nejmensi a nejvétsi hodnoty skalarniho
souinu AB a AC.

Ostatni body (ty, které nelezi na této pfimce) musi lezet ve stejné poloroviné
od ni. To mizeme opét overit pomoci stejného vektorového soucinu: Ten musi mit
stejné znaménko pro vSechny body C, pro které je odlisny od nuly. Pokud toto
neplati, feSeni neexistuje.

Ostatni body nyni rozdélime body do dvou skupin: Ty, které jsou nejdale od
nasi pfimky, a ostatni. To mtzZeme provést pomoci skalarniho soucinu, tentokrat
vynasobenim @ s normdlovym vektorem nasi pfimky, tj. vektorem kolmym na A
(vektor kolmy na vektor (z,y) je napfiklad (—y,x)).

Body, které jsou nejdale, musi lezet na opacné strané obdélniku, ktery hledame.

4

Zbyvajici body (pokud néjaké zbyvaji) nazveme bocnimi body. VSechny bo¢ni body
musi lezet na druhé dvojici rovnobéznych stran. Zbyva jen ovéfit, zda toho mizeme
dosdhnout, tedy zda mizeme vybrat zbyvajici dvé strany obdélniku tak, aby pokryly
vsechny bo¢ni body.

Vsechny body promitneme kolmo na pivodni pfimku AB (to mZeme opét
provést pomoci skaldrniho sou¢inu). Necht C'D je nejkratsi asecka, obsahujici body
leZici pfimo na pfimce AB a kolmé priuméty vSech bodt z druhé rovnobézné pfimky.
Cel4 tato tsec¢ka C'D musi byt obsazena ve strané obdélnika na pfimce AB, proto
zadny z bo¢nich bod nemize mit svij kolmy primét ostfe uvnitt asecky C'D. Navic
prameéty vSech bo¢nich bodi, které lezi na jedné strané usecky C'D, musi byt stejné
— v8echny musi lezet na jedné strané obdélnika kolmé na primku AB. Pokud toto
nastava, snadno sestrojime hledany obdélnik: Dva jeho vrcholy jsou ,nejlevéjsi“ a
ynejpravéjsi“ z kolmych primétt na primku AB. Treti mizeme najit tak, Ze se
od jednoho z nich posuneme podél norméalového vektoru o vzdélenost, ve které se
nachézi protilehla strana.

Program (C++):

#include <bits/stdc++.h>
using namespace std;

// geometrické funkce

typedef complex<double> point;
typedef vector<point> point_seq;

const double EPSILON = 1le-7;

bool is_negative(double x) { return x < -EPSILON; }
bool is_zero(double x) { return abs(x) <= EPSILON; }
bool is_positive(double x) { return x > EPSILON; }

bool are_equal(const point &A, const point &B)
{ return is_zero(real(B)-real(A)) && is_zero(imag(B)-imag(A)); }
double dot_product (const point &A, const point &B)
{ return real(A) * real(B) + imag(A) * imag(B); }
double cross_product(const point &A, const point &B)
{ return real(A) * imag(B) - real(B) * imag(A); }
double size(const point &A)
{ return sqrt(real(A) * real(A) + imag(A) * imag(A)); }
point normal(const point &smer)
{ return point(-imag(smer), real(smer)) / size(smer); }

// FeSeni ulohy

int n;
point_seq vstup;

point_seq find_first_and_last(const point_seq &X) {
point unit = (X[1] - X[0]) / size(X[1] - X[01);
vector<double> dot_products;
for (auto x:X) dot_products.push_back(dot_product(unit, x-X[0]));
double mn = *min_element (dot_products.begin(), dot_products.end());
double mx = *max_element(dot_products.begin(), dot_products.end());
return { X[0] + unit*mn, X[0] + unit*mx };

point_seq test_line(const point &A, const point &B) {
// rozt¥idime vSechny body dle jejich pozice vzhledem k p¥imce AB
point_seq nalavo, napravo;
for (int i=0; i<n; ++i) {
double vp = cross_product(B-A, vstup[il-A4);
if (is_positive(vp)) nalavo.push_back(vstup[il);
if (is_negative(vp)) napravo.push_back(vstup[il);
}
if (!'nalavo.empty() && !mapravo.empty()) return {};

// oSetfime pfipad, kdy vSechny zadané body jsou na stejné primce

if (nalavo.empty() && napravo.empty()) {
auto odpoved = find_first_and_last(vstup);
odpoved.push_back(odpoved[0] + normal(odpoved[1]-odpoved[0]));
return odpoved;

}

// najdeme body, které nejsou nejdale od pfimky AB, tedy boéni body
double maxvz = 0;
point_seq mimo = nalavo.empty() ? napravo : nalavo;
for (auto x : mimo)
maxvz = max(maxvz, abs(dot_product(x-A, normal(B-A4))));
point_seq boky;
for (auto x : mimo) {
if (lare_equal(maxvz, abs(dot_product(x-A, normal(B-4)))))
boky.push_back(x) ;
}

// vSe promitneme na p¥imku AB
point_seq priemety;
point unit = (B-A) / size(B-A);
for (auto x : vstup)
priemety.push_back(A + unit*dot_product(unit, x-4));

// zkontrolujeme, zda prim&ty bo&nich bodd jsou
// "nejlevéjsi" a "nejpravéjSi" na AB
auto krajne = find_first_and_last(priemety);
for (auto x : boky) {
auto pr = A + unit*dot_product(unit, x-A);
if (lare_equal(pr, krajne[0]) && 'are_equal(pr, krajne[1]))
return {};

}

// vyrobime t¥i rohy obdélnika
auto norm = normal(krajne[1]-krajne[0]);
auto candl = krajne[0] + maxvz*norm, cand2 = krajne[0] - maxvz*norm;
if (is_negative(cross_product(B-A, candl-A)))
swap(candl, cand2);
auto treti = nalavo.empty() ? cand2 : candi;
return { krajne[0], krajne[1], treti };

int main() {
cin >> n;
vstup.resize(n);
for (int i=0; i<n; ++i) {
double x, y;
cin >> x >> y;

vstup[il = point(x,y);

for (int a=0; a<5; ++a) for (int b=0; b<a; ++b) {
auto odpoved = test_line(vstuplal, vstup[bl);
if (odpoved.empty())
continue;
for (auto b : odpoved)
cout << b << endl;
return O;

}

cout << "NE" << endl;
return 0;

Alternativni vzorové feSeni

Myslenky obou vyse uvedenych feSeni mizeme zkombinovat do feseni s linearni
Casovou slozitosti nasledujicim zptisobem: Za¢neme hledanim konvexniho obalu, ale
misto jedné z metod s ¢asovou slozitosti O(nlogn) pouZijeme algoritmus ,baleni
darku® (také nazyvany Jarvistiv algoritmus). Tento algoritmus konstruuje konvexni
obal bod po bodu a mé ¢asovou slozitost O(hn), kde h je pocet vrcholt vysledného
konvexniho obalu. Tento algoritmus je obecné pomalejsi, protoze v nejhorsim piipadé
je jeho casova slozitost kvadraticka v poc¢tu bodt ve vstupu. V nasi tloze vSak vime,
ze jakmile ziskame devaty bod na konvexnim obalu, mizeme algoritmus ukondéit a
dat zapornou odpovéd. V linedrnim case tedy ziskavame bud odpovéd NE, nebo cely
konvexni obal nasich bodu.

P-II-3 Platonova Akademie

Pro kazdé i za¢neme v optimalnim feSeni studovat predmét ¢ + 1 nejvyse dva
mésice po zahédjeni studia pfedmétu ¢, pro volbu pocatecniho mésice studia predmeétu
i+ 1 tedy vzdy existuji nejvyse tii moznosti. VyzkouSenim a kontrolou vsech téchto
moznosti pro kazdé i ziskdme spravné, ale pomalé feseni s exponenciadlni ¢asovou
slozitosti.

Efektivni FeSeni pro maly pocet hodin

Pfipomenme, Ze ¢islo p udavd maximélni pocet hodin, které mizeme kazdy
mésic stravit studiem. Struéné nastinme jedno mozné feseni, které je efektivni, pokud
je toto Cislo p malé.

Reknéme, Ze uz jsme se né&jak rozhodli pro to, které predméty zacit studovat
v prvnich par mésicich. Pro nase dalsi rozhodovéni jsou dilezité jen dva parametry:
Pocet x pfedméti, které jsme jesté nezacali studovat, a pocet z hodin, které jesté
mame k dispozici v nasledujicim mésici (zatimco ostatni potfebujeme na dokonceni
predmétti zapocatych v poslednim mésici).

Pro kazdé = a z si muzeme polozit otazku, kolik nejméné mésici nam muze
trvat dostudovani zbyvajicich predméti. Na kazdou takovou otazku miizeme odpo-
védét vyzkousenim vSech moznosti, kolik pfedmétt za¢neme studovat v nasledujicim

7

meésici. Pro kazdou takovou moznost dostaneme situaci stejného typu o mésic poz-
déji, jen s jinymi hodnotami = a z. Problém tedy muzeme fesSit rekurzivni funkci
s parametry = a z. Pro zefektivnéni muzeme pfidat keSovani (memoizaci), tj. vy-
sledek pro danou kombinaci parametri si ulozime a pfi opakovaném volani funkce
se stejnymi parametry pouze vratime ulozenou hodnotu. Tim zajistime, Ze pro kaz-
dou kombinaci parametrii provadime vypocet nejvyse jednou, a dostavame FeSeni
s ¢asovou slozitosti O(n?p).

Reseni s kubickou ¢asovou sloZitosti

Zacneme predbéznym vypoctem prefixovych souctt pro pole A a B. Diky tomu
budeme umét pro libovolny souvisly tisek predmétt urcit, kolik hodin nam zaberou
ve kterém mésici, pokud je zacneme studovat naraz.

Ozna¢me D[y] minimélni po¢et mésicii potiebnych k iplnému vystudovani prv-
nich y pfedméti. Déle ozna¢me M [z][y] minimélni pocet mésicti potfebnych k tpl-
nému vystudovani prvnich y predmétu tak, abychom prvnich = pfedmétt meéli do-
studovanych jiz pfed koncem minulého mésice. Z hodnot M snadno spocitame fe-
Seni zadané ulohy. Konkrétn&, D[y] je jednoduSe minimum ze v8ech M|z|[y] pro
x €{0,1,...,y — 1}; a FeSeni celé tlohy je hodnota DIn].

Ukazme si, jak postupné vypocitat hodnoty M a D. Zjevné mame M[0][0] =0
a D[0] = 0. KdyZ chceme vypodcitat konkrétni hodnotu M|z|[y], vime, Ze b&hem
posledniho meésice jsme museli dostudovat predméty s Cisly =z, z + 1, ..., y — 1.
Pokud by nadm tyto pfedméty zabrali vice nez p hodin, pak M[z][y] = oo: Této
situace nemuzeme viibec dosdhnout.

V ostatnich pfipadech uréime M [x][y] rozborem dvou pfipadii dle toho, co jsme
délali predposledni mésic.

Prvni moZnosti je, Ze jsme studovali pouze stejnych y—x predmétu jako posledni
mésic. Optimalnim fesenim v této varianté je samoziejmé dostudovat prvnich z
predméti co nejrychleji a poté pridat dva mésice na nasledujicich y — x predmét,
celkem tedy budeme potiebovat D[z] + 2 mésicii.

Druhou moznosti je, ze pfed dvéma mésici jsme méli dostudovano pouze z
pfedméti, pro néjaké nezndmé z < x, a poté béhem predposledniho mésice jsme
dostudovali pfedméty s ¢isly z, 2+ 1, ..., x — 1 a zacali studovat pfedméty «, ...,
y — 1. Kdybychom znali konkrétni z, mohli bychom ¥ici, jak dlouho by cely proces
trval: M[z][z] + 1 mésict.

Hodnotu Mz][y] zjistime vybérem nejkratsi doby trvani z téchto moznosti.
Vezmeme tedy minimum z hodnoty D[z] + 2 a v8ech hodnot M [z][z] + 1 takovych,
abychom béhem predposledniho mésice stihali studovat vSechny predméty s ¢isly z,
z+1,...,y—1.

Hodnoty M [z][y] miZeme pocitat v cyklu pro vSechna z, a pro kazdé = v cyklu
pro vSechna y > z. Poté, co takto dopoéitdme hodnoty M |z][y] pro vSechna y > z,
jiz znédme v8echny hodnoty M|[z'|[x + 1] pro ' < z, a z nich miZzeme ur¢it hodnotu
Dlx + 1] jako jejich minimum.

Celkové musime vypoé¢itat O(n?) riiznych hodnot v poli M. Vypodet kazdé

8

z nich ndm zabere nanejvys linedrni ¢as, protoze musime vyzkouset O(n) rtiznych
hodnot z. Celkovéd Easovd sloZitost tohoto feseni bude tedy O(n?).

Vzorové FeSeni (s kvadratickou €asovou sloZitosti)

Vsimnéte si, Ze vSechny vypoéty hodnot M[z][y] pro rtizné y jsou velmi podob-
né: vzdy za¢indme se stejnou hodnotou D[z] + 2 a poté zkouméame hodnoty M [z][x]
pro piipustné z. Jedind véc, kterd se méni v zavislosti na y, je to, které hodnoty
jsou pripustné. Pfesnéji feceno, ¢im mensi y zvolime, tim méné hodin potfebujeme
ke studiu pfedmétit v poslednim mésici a tim vice jich tedy mitizeme pouzit na do-
konceni predmétt zapocatych v predposlednim mésici; to znamena, ze vétsi z muze
byt stale pripustné.

S vyuzitim tohoto pozorovani nyni vylepsime ¢asovou slozitost feseni popsané-
ho v predchozi ¢asti. Podobné jako v tomto reseni budeme postupné pocitat vsechny
hodnoty M|z]y] pro pevné x. Tentokrat to vSak udélame v opa¢ném sméru: zacne-
me s y = n a postupné budeme snizovat y az k y = x + 1. Kdyz postupné pro-
chézime vSechny hodnoty y v sestupném potadi, v kazdém kroku zlistavd mnozina
pripustnych hodnot z stejna nebo se zvétsuje. Misto toho, abychom prochézeli znovu
vSechna z pro kazdé y, staci vzit pfedchozi hodnotu a pokud pfibudou néjaké nové
pripustné hodnoty z, projit je a zjistit, zda nam davaji nové, lepsi feseni.

Pro kazdé konkrétni x takto vypocitdme vSechny hodnoty M[z][y] v celkovém
¢ase O(n), jelikoz kazdé piipustné y a z zpracujeme pravé jednou. Celkové tedy
dostaneme ¢asovou slozitost O(n?).

Program (C++):

#include <iostream>
#include <vector>
using namespace std;

const int NEKONECNO = 987654321;

vector<int> prefix_sums(const vector<int> &X) {
vector<int> PX(1, 0);
for (int x : X) {
int next = PX.back() + x;
PX.push_back(next);

}
return PX;
}
int main() {
int p, n;

cin >> p >> n;
vector<int> A(n), B(n);
for (int i=0; i<n; ++i)
cin >> A[i] >> B[il;
vector<int> PA = prefix_sums(A), PB = prefix_sums(B);

vector<int> D(n+1, NEKONECNO);
D[0] = 0;
vector<vector<int>> M(n+1, vector<int>(n+1, NEKONECNO));

for (int x=0; x<n; ++x) {

int best = D[x] + 2, z = x;
for (int y=n; y>x; --y) {
// vypoéet M[x] [y]

// zkontrolujeme, zda lze zarovei studovat x, ..., y-1
int treba_minuly = PA[y] - PA[x], treba_tento = PB[y] - PB[x];
if (treba_minuly > p || treba_tento > p) continue;

// jestliZe ano, p¥ibyly né&jaké moZné mensi hodnoty z?
while (z > 0 && treba_minuly + PB[x] - PB[z-1] <= p) {
——z;
best = min(best, M[z][x]+1);
}
M[x] [y] = best;
}
// ted miZeme dopo&itat D[x+1]
for (int i=0; i<=x; ++i)
D[x+1] = min(D[x+1], M[i][x+1]);
¥
cout << D[n] << endl;

return 0;

P-1I-4 Resi¢ to opét vyiesi

Poduloha A

Stejné jako v domacim kole sta¢i mit pro kazdy projekt jednu binarni promén-
nou. Hodnota této proménné je 0, pokud projekt nepodporujeme, nebo 1, pokud jej
podporujeme. Slabou zavislost projektu = na projektech ¥, ..., yx modelujeme jed-

noduse jako nerovnost x < y;+- - -+yg. Zbytek feseni zistava stejny jako v domacim
kole.

Podiloha B

Pro kazdy kopec ¢ budeme mit t¥i bindrni proménné z; 1, z; 2 a z; 3, jejichz hod-
noty udévaji, zda na tomto kopci postavit prvni, druhou a t¥eti sjezdovku. V praxi je
také vhodné k témto proménnym pridat nerovnosti z; 1 > z; 2 > 2; 3. T'yto nerovnos-
ti muzeme interpretovat tak, ze druhou sjezdovku muzeme oteviit pouze v pripadé,
7e jsme otevieli také prvni, a tak dale. Resi¢ pak nemusi zbyteéné zkoumat logic-
ky ekvivalentni vétve, jako je moznost oteviit pouze tfeti sjezdovku namisto pouze
prvni sjezdovky.

Déle budeme mit pro kazdou sjezdovku celoc¢iselnou proménnou d; ; oznacujici
jejil presnou délku: nula, pokud ji nepostavime, nebo ¢islo mezi ¢; a u;, pokud ji
postavime. Celkova délka sjezdovek pak bude jednoduSe souc¢tem vsech d; ;. Tento
soucet by mél byt presné roven dané hodnoté d.

Celkové néklady na vystavbu sjezdovek budou souctem soucint c¢; - d; ; pro
vSechna i a j. Chceme tyto naklady minimalizovat, coz bude cilem naseho ILP.

vvvvv

ze hodnoty d; ; budou mit vySe uvedeny rozsah. Klicovou soucésti feseni této tlohy
bylo vymyslet, jak toho mizeme dosdhnout pouze pomoci linedrnich nerovnosti.

10

Podivejme se na hodnoty ¢; - z; ; a u; - z; ;. V obou piipadech se jedna o vyrazy
ve tvaru konstanta krat proménna, se kterymi umime pracovat. Pokud prifadime
proménné z; ; hodnotu nula (tj. pokud se rozhodneme tuto konkrétni sjezdovku
nepostavit), budou mit oba vySe uvedené vyrazy hodnotu 0. Naopak, pokud z; ; =
1, budou mit tyto dva vyrazy hodnoty ¢; a u,;. Proto sta¢i do naseho ILP pridat
nasledujici nerovnosti:

Uiz < dij <z

Ty v obou pfipadech zaruéi spravny rozsah pro délku prislusné sjezdovky.

11

