75. ro¢nik Matematické olympiady — 2025/2026
Ulohy krajského kola kategorie P

Krajské kolo 75. ro¢niku MO kategorie P se konda v atery 20. 1. 2026 v dopo-
lednich hodinach. Na feseni tiloh méate 4 hodiny ¢istého ¢asu. V krajském kole MO-P
se nefesi zadna praktickd tloha, pro zajisténi rovnych podminek fesiteld ve vSech
krajich je pouziti po¢itaci pii soutézi zakdzano (s vyjimkou nahravani feseni do ode-
vzdévaciho systému). Zakdzany jsou rovnéz jakékoliv dalsi pomtcky kromé psacich
potieb (napt. knihy, vypisy programt, kalkulacky, mobilni telefony). ReSeni kazdé
ulohy vypracujte na samostatny list papiru.

Reseni kazdé tilohy m4 obsahovat popis fesens, to znamené slovni popis prin-
cipu zvoleného algoritmu, argumenty zdivodriugici jeho spravnost (pfipadné dikaz
spravnosti algoritmu), diskusi o efektivité vaseho feSeni (Gasovd a pamétova slozi-
tost). Neni mozné odkazovat se na vase feSeni tlloh doméciho kola.

Do feseni nemusite psat odpovidajici program, algoritmus staci zapsat ve vhod-
ném pseudokédu nebo dokonce jenom slovné, je-li popis dostatecné podrobny a sro-
zumitelny. Nemusite detailné popisovat jednoduché operace jako vstupy, vystupy,
implementaci jednoduchych matematickych vztaht, vyhledavani v poli, t¥idéni apod.
Podrobnéjsi seznam algoritmt a datovych struktur, které povazujeme za obecné zna-
mé a muzete je pouzivat bez podrobnéjsiho popisu, naleznete na konci zadani.

Za kazdou tlohu muzete ziskat maximélné 10 bodt. Hodnoti se nejen sprav-
nost feSeni, ale také kvalita jeho popisu a efektivita zvoleného algoritmu. Algoritmy
posuzujeme podle jejich ¢asové slozitosti, tzn. zavislosti doby vypocétu na velikosti
vstupnich dat. Zalezi pfitom pouze na fadové rychlosti ristu této funkce. V zadani
kazdé ulohy najdete priblizné limity na velikost vstupnich dat. Efektivnim vyfeSenim
tlohy rozumime to, Ze vas program spustény s takovymi daty na souasném bézném
pocitaci dokonéi vypocet béhem nékolika sekund.

Vzorova feseni tloh naleznete kratce po soutézi na webovych strankach olympi-
ady ettps://mo.m]J.cunt.cz/p} Na stejném misté bude zvefejnén i seznam tspésnych
fesitelt krajského kola a seznam fesiteld postupujicich do ustfedniho kola. Sva opra-
vena feSeni s komentafi opravovateli najdete v OSMO.

https://mo.mff.cuni.cz/p/

P-1I-1 Sisyfos a balvany

Znameého feckého kréle Sisyfa bohové odsoudili k tomu, aby navéky marné valil
balvan do kopce. Nedavno mu ale diky zméndm v pracovnich pfedpisech byli nuceni
tento trest upravit a misto toho nyni balvany pfenési a fadi dle vahy.

Bohové ho postavili na zacatek fady n balvani ocislovanych zleva doprava od
0 do n — 1; hmotnost balvanu stojiciho na pozici ¢ budeme oznacovat jako H[i].
platilo H[0] < H[1] < --- < H[n — 1]. Aby se vyhnul nutnosti pfendset balvany na
dlouhé vzdalenosti, rozhodl se Sisyfos postupovat nasledovné:

® Jde podél balvani zleva doprava.

e Kdykoli narazi na balvan, ktery méa bezprostfedné nalevo od sebe tézsi
balvan, vyméni je, tézsi balvan posune o jednu pozici doprava a lehc¢i
balvan o jednu pozici doleva. Formalnéji feceno, kdyz Sisyfos dorazi na
pozici ¢ > 1 a vidi, ze H[i — 1] > H[i], prohodi hodnoty H[i — 1] a H[i].

e Poté se vrati na zac¢dtek fady (pfitom balvany neprohazuje).

Tomuto postupu budeme fikat kolo. Sisyfos ho opakuje az do chvile, kdy uz
v néjakém kole neprovede zadnou dalsi vymeénu.

Soutézni tloha
Tato tloha mé nékolik podiloh; miizete Fesit kazdou zv1ast, ale i napsat algo-
ritmus, ktery vyfesi podtlohy b) a c) zaroveti.

a) (2 body) Dokazte, Ze pro libovolnou posloupnost balvani Sisyfos po ko-
nec¢ném poctu kol skondi.

b) (3 body) Ukazalo se, Ze Sisyfos nezvladne pfesunout balvany, jejichz hmot-

nost je vétsi nez w. Proto upravil sviij postup tak, ze pokud by mél pro-
hodit dva balvany, z nichz je alespon jeden moc tézky, misto toho nic
neudéld a posune se na dalsi pozici.
Vstup tvoii ¢isla n, w a pole H obsahujici hmotnosti balvanti v jejich
pocatecnim poradi. Napiste algoritmus, ktery uréi hmotnosti balvanii na
jednotlivych pozicich poté, co Sisyfos skonci. Vystupem je tedy konecny
obsah pole H.

c¢) (5 bodt) Napiste algoritmus, ktery pro stejny vstup jako v podiloze b)
uréi, kolik kol bude Sisyfav postup trvat pro tuto konkrétni posloupnost
balvani a hodnotu w. Nezapometite dokézat spravnost vaseho algoritmu!

Pfipominame, ze nemusite feSit detaily implementace vstupt a vystup®; ma-
zete tedy napiiklad pfedpokladat, ze na zacatku béhu algoritmiu fesicich podualohy
b) a ¢) uz mate vstupy na¢tené v poli H a proménnych n a w.

Bodovani

Plny pocet bodii za podilohy b) a c) ziskaji FeSeni s ¢asovou slozitosti O(n logn),
tedy efektivni pro n < 10°. ReSeni s ¢asovou slozitosti O(n?), tedy efektivni pro
n < 5000, ziskaji 1 bod za kazdou z téchto poduloh. Jeden bod strhneme algo-
ritmtm, které funguji pouze za predpokladu, Ze vSechny hmotnosti v poli H jsou
navzajem ruzné.
Priklady

Necht n = 9 a balvany maji po fadé hmotnosti 10, 30, 20, 60, 50, 40, 80, 80, 70.
Nejprve uvazujme situaci, kdy Sisyfos mtze pfesunout vSechny balvany, tj. w > 80.
V prvnim kole by Sisyfos postupoval nasledovné:

® Na pozici 1 neni tieba nic délat.
® Na pozici 2 je balvan lehéi nez ten vlevo:

®O®OW®®Em
0 | 2 3 | 5 7

5 6 7 8

e Tyto balvany budou prohozeny:

0 1 2 3 | 5 7 8

6

® Na pozici 3 neni tfeba nic délat.
® Na pozici 4 je balvan lehéi nez ten vlevo:

0 1 2 3 4 5 7 8

6

® Po jejich vymeéneé se vyskytuje dalsi takovy pfipad na pozici 5:

0 1 2 3 | 5 7 8

5 6

® Na pozicich 6 a 7 neni tieba nic délat.
® Na pozici 8 provede dalsi vyménu:

0 1 2 3 | 5 6 7 8

® Na konci prvniho kola vypada pole H takto:

0 1 2 3 4 5 6 7

5) 8

Ve druhém kole by Sisyfos provedl vyménu na pozici 4 (balvany o hmotnosti 50 a
40) a poté na pozici 7 (balvany o hmotnosti 80 a 70).

Ve tietim kole by Sisyfos neprovedl zadné vymény. Proces by tedy skoncil po tiech
kolech sefazenym polem H:

@ @) () () (30) () (w)(30)(»)
0 1 2 3 4 5

5 6 7 8

Kdyby byl Sisyfos o néco slabsi (w = 59), postupoval by v prvnim kole nésledovné:

e Na pozici 1 neni tfeba provadét zaddnou akci.

e Na pozici 2 provede vyménu (hmotnosti 30 a 20).

® Na pozici 3 neni tfeba nic délat.

® Na pozici 4 nemtze provést vymeénu, takze neudéla nic.
e Na pozici 5 provede vyménu (hmotnosti 50 a 40).

® Na pozicich 6 a 7 neni tfeba provadét zadnou akci.

® Na pozici 8 nelze provést vyménu, takze tyto dva balvany také ztistanou
na svém misté.

® Na konci prvniho kola vypada pole H nasledovné:
o 1 2 3 4 5 6 71 3

Ve druhém kole by Sisyfos neprovedl zadné vymeény, proces by tedy skoncil po dvou
kolech ve vyse zobrazeném stavu.

Kdyby byl Sisyfos ve stejné vychozi situaci jesté slabsi (w = 27), neprovedl by
v prvnim kole zadné zmény a cely proces by ihned skondéil.

P-II-2 Obdélnik

Augias se rozhodl postavit novy chlév ve tvaru obdélniku pro sviij dobytek.
Jiz ze drivéjska mu na jeho pozemku stoji né€kolik sloupi, na néz mohou byt stény
chléva upevnény. Jelikoz je nejen neporadny, ale i lakomy, chtél by k tomuto ucelu
vyuzit vSechny tyto sloupy.
SoutéZni tloha

V roviné mate dano n > 10 navzajem riznych bodu, udavajicich pozice sloupii.

Navrhnéte algoritmus, ktery urci, zda vSechny tyto body lezi na obvodu néjakého
(libovolné otoc¢eného) obdélniku. Pokud ano, najdéte jeden takovy obdélnik.

Format vstupu

Na prvnim fadku vstupu je ptirozené cislo n. Nésleduje n radkt popisujicich
zadané body; na i-tém z nich jsou dvé celé cisla x; a y;, kterd udavaji souradnice
i-tého bodu.

Format vystupu

Vypiste bud fetézec ,NE“, jestlize hledany obdélnik neexistuje, nebo souradnice
t¥i z vrcholi néjakého obdélnika, na jehoz obvodu lezi vsechny zadané body. Tyto
soutadnice nemusi byt celociselné.

Bodovani

P1i psani algoritmu miizete predpokladat, ze vsechny operace s redlnymi Cisly
jsou presné. Jinymi slovy, neni tieba fesit zaokrouhlovaci chyby, které by mohly
nastat pfi praktické implementaci.

Abyste ziskali plny pocet bodl, musite najit feSeni s ¢asovou slozitosti O(n),
tedy efektivni pro n < 107, a dokazat jeho spravnost. ReSeni s ¢asovou sloZitosti
O(nlogn) (efektivni pro n < 10%) mohou ziskat az 8 bodii a feSen{ s ¢asovou slozitosti
O(n?) (efektivni pro n < 5000) mohou ziskat az 6 bod. Pomalejsi spravna feseni
mohou ziskat az 4 body.

Priklady
Vstup:

10

S 01O N0 O WwNN = O

Vstup:

-
o

WO WNEFEOWNRO

01O N0 O WwWNN = O

NN, P, PR, PR OOOO

Vystup:
00
10 10
11 9

V tomto prikladu body lezi na jedné
piimce, fesenim je tedy libovolny obdél-
nik, jehoz jedna strana obsahuje
vsechny zadané body.

-3 -2 -1

0

3 1 5 6 7 8 9 10 11 12

Vystup:
NE

Zadny obdélnik nema na hranici vSech-
ny zadané body.

Vystup:
-2.4 -0.2
8 5

9.8 1.4

Zde existuje jediné feSeni.

3 4 5 6 7 8 9 10 11

12

P-II-3 Platonova Akademie

Gratulujeme, byli jste pfijati ke studiu na Platénové Akademii! Nechcete ale
ve Skolnich lavicich stravit zbyte¢né moc ¢asu, radi byste si proto rozvrhli pfedmeéty
tak, abyste dostudovali co nejdrive.

SoutéZni tloha

Abyste vystudovali, musite absolvovat n predmétn, oc¢islovanych od 0 do n—1.
Predméty musite studovat v predepsaném poradi, tj. pro zadné ¢ < j nesmite zacit
studovat pfedmét j diive nez predmét ¢ (mizete je ale zac¢it studovat zarover).

Absolvovani kazdého z predmétt vyzaduje dva po sobé jdouci kalendaini mésice
(prvni mésic chodite na pfednasky a ten druhy sklddate zkousky). Pfedmét ¢ vam
zabere A[i] hodin béhem prvniho mésice a B[i] hodin béhem druhého mésice. V rdmci
kazdého mésice mulzete studovat i vice predmétti, nesmi vam ale dohromady zabrat
vice nez p hodin. Specialné tedy nesmite zacit dohromady studovat predméty, které
by vdm ve druhém (zkouskovém) mésici zabraly vice nez p hodin, i kdyby se vam
jejich prvni (pfednéskovy) mésic do limitu p hodin vesel.

Navrhnéte algoritmus, ktery vypocita miniméalni poc¢et mésict potfebnych k do-
studovani.

Format vstupu

Na prvnim radku vstupu jsou prirozena ¢isla p a n. Na i-tém z n nasledujicich
fadkl jsou dvé nezdpornd celd ¢isla udavajici hodnoty A[i — 1] a B[i — 1]; obé tyto
hodnoty jsou mensi nebo rovny p.
Format vystupu

Na vystup vypiste jediné ¢islo, minimalni pocet mésici, za néz lze dostudovat.
Bodovani

Plny pocet bodti mohou ziskat feSeni s ¢asovou slozitosti O(n?), tedy efektivni
pro p < 10° a n < 5000. Nanejvys 8 bod mohou ziskat FeSeni s ¢asovou sloZitosti
O(n?), tedy efektivni pro p < 10° a n < 300. Nanejvys 6 bodii mohou ziskat Feseni
s ¢asovou slozitosti O(n?p) ¢i obdobnou, tedy efektivni pro p,n < 300. Nanejvys 4

body mohou ziskat feSeni s ¢asovou slozitosti O(2") ¢i obdobnou, tedy efektivni pro
p<10°an<12.

Priklady

Vstup: Vystup:
1000 4 3

300 100

300 100

100 800

700 200

Prvni mésic bychom sice mohli zacit studovat predméty 0, 1 a 2 dohromady, pak
bychom ale na studium pfedmétu 3 méli cas az treti a ctvrty mésic. Lepsi bude zacit
v prvnim mésici pouze piedméty 0 a 1 (to ndam zabere 300 + 300 = 600 hodin) a
predmeéty 2 a 3 zacit studovat ve druhém mésici. Ve druhém mésici budeme potiebo-
vat 100 + 100 = 200 hodin na dokonceni predmétii 0 a 1 a 100+ 700 = 800 hodin na
zahajeni studia predméti 2 a 3, coz se nam dohromady vejde do limitu 1000 hodin.
Ve tietim mésici nam dostudovani predméti 2 a 3 zabere 800 4+ 200 = 1000 hodin.

Vstup: Vystup:
1000 3 4

100 800

100 800

100 800

Zadné dva pfedméty nemiizeme zacit studovat nardz, protoze ve druhém mésici
bychom na jejich dokonceni potiebovali 800 + 800 = 1600 > 1000 hodin. Nejlepsi je
tedy kazdy mésic zacit studovat jeden predmét.

Vstup: Vystup:
1000 5 4

500 499

500 500

11

500 500

499 500

P-1I-4 Resi¢ to opét vyiesi

K této tloze se vztahuje studijni text uvedeny na nasledujicich stranach, ktery
je stejny jako v domécim kole. Uloha se sklidda ze dvou nezavislych podiiloh, fesit
miuzete kteroukoliv z nich nebo obé dvé v libovolném poradi.

Podiloha A: Slabé zavislosti (2 body)

Pripomenme zadéani tlohy z domaciho kola: Mame k dispozici e eur. Existuje
n projektt (ocislovanych od 1 do n), do kterych miizeme investovat; kazdy z nich
bud podpofime, nebo ne. U kazdého projektu znadme ¢astku s; potiebnou k jeho
podpofe a hodnotu v;, kterou ziskdme zpét jako vynos, pokud jej podporime. Vynos
obdrzime az na konci realizace vSech podporenych projektii, soucet hodnot s; téchto
projektt tedy nemiize presdhnout e.

Pro krajské kolo navic mezi projekty mohou byt slabé zdvislosti v nasledujicim
tvaru: Projekt x; mtzeme podpofit pouze tehdy, pokud také podporime alesponi
jeden z projektt y; 1, ¥i2, - .., ¥i,~,- Napiiklad projekt péstovani bio zeli nelze usku-
tecnit, pokud nepodpofime ani projekt instalace automatického zavlazovani, ani
projekt 3D tisku dvojruénych kbeliki.

Popiste, jak pro danou sadu projektid a seznam slabych zavislosti mezi nimi
sestavit ILP, jehoz optimalni feSeni odpovida sadé projektt, jejichz podpora nam
pfinese maximalni celkovy zisk. Popiste cely ILP, véetné ¢asti, které ziistavaji stejné
jako v doméacim kole.

Priklad

Meéjme e = 110000 eur a n = 5 projektii. Castky s; na jejich podporu jsou po
radé 50 000, 50 000, 20 000, 40 000, 49999 a vynosy v; jsou po fadé 50 100, 95, 26 000,
900000, 1.

Mezi projekty jsou dvé slabé zavislosti:
® projekt 4 zavisi na projektu 3
(tedy x1 =4, z1=1ay;1 =3)
e projekt 3 zdvisi na projektech 2 a/nebo 5
(tedy 2 =3, 20 =2, Y21 =2 a Ya,2 = 5).
Optimalni feSeni je podporit projekty 2, 3 a 4, na konci tak budeme mit 816 095
eur.
Pokud bychom ve stejné situaci méli jen 100 000 eur, optimélni by bylo podpoftit
jen projekt 1.

10

Podiloha B: LyZaiské sjezdovky (8 bodu)

Kolem horské vesnice se nachéazi k kopct ocislovanych od 1 do k, na kterych
mizeme budovat lyZzatfské sjezdovky. Na kazdy kopec se ndm ale sjezdovky vejdou
nejvyse tri. Kazda sjezdovka postavena na kopci ¢ musi mit celo¢iselnou délku, a to
alesponi ¢; a nanejvys u; metri. Postaveni kazdého metru sjezdovky na kopci ¢ nas
stoji ¢; eur. Navic bychom chtéli, aby celkova délka vSech sjezdovek v celém lyzarském
arealu byla presné d metri.

Popiste, jak sestavit ILP, ktery bude mit feseni, pravé kdyz je to mozné. Op-
timéalni feseni tohoto ILP navic musi odpovidat nejlevnéjSimu moznému zpisobu
vystavby pozadované sady sjezdovek.

Jednodussi varianty
Muzete se také rozhodnout fesit jednu z nasledujicich jednodussich variant této
podulohy:
® Za vyTeSeni varianty, v niz je na kazdém kopci mozné postavit nejvyse
jednu sjezdovku, mtzete ziskat az 6 bodi.
® 7a vyfteSeni varianty, v niz vSechny kopce spliiuji ¢; = u;, muzete ziskat
az 3 body.
Pokud odevzdate feSeni jedné z t&chto jednodussich variant, uvedte to prosim
vyrazné hned na jeho zacatku.
Priklad
Maéame k = 2 kopce:
e Na prvnim se daji stavét sjezdovky délky ¢; = 1000 az u; = 1100
metri, a to metr za ¢; = 100 eur,
® na druhém sjezdovky délky ¢ = 300 az uy = 400 metri, a to metr
za co = 70 eur.
Chceme areal s 2410 metry sjezdovek.
Jednim optimalnim feSenim je postavit na prvnim kopci dvé sjezdovky délek
1003 a 1007 metrta a na druhém kopci jednu sjezdovku délky 400 metri. Dohromady
nas to bude stat 229000 eur.

11

Studijni text: Celociselné linearni programovani

V letoSnim ro¢niku olympiady se budeme zabyvat optimaliza¢nimi problémy,
tedy problémy, které maji mnoho riznych feseni, a nasim tkolem je najit to nejlepsi.
Napftiklad nas muze zajimat:

® Jak nejlevnéji navstivit vSechna mésta na Slovensku?

e Kolik krabic potiebuji k zabaleni vsech svych knih pfi st€hovani?

e Jaka je velikost nejvétsi podmnoziny resiteld letosni MO-P, ve které se
vSichni navzajem znaji?

Mnoho optimaliza¢nich problém® mé jednu spole¢nou nepfijemnou vlastnost:
nezname pro né zadné efektivni algoritmické feseni. Empiricky si dovolime tvrdit, Ze
do této smutné kategorie spadé drtiva vétSina optimalizac¢nich problémi, s nimiz se
setkdvame vSude v praxi — at uz v poéitacich (napf. planovani procest, smérovani
pakett v sitich) nebo v redlném Zivoté (napf. logistika vSeho druhu, optimalizace
néklad nebo rizné problémy v bioinformatice). Mimochodem, vSechny t¥i vyse
uvedené problémy sem také patii.

Situace je jesté horsi. Nejenze nezname zadny algoritmus, ktery by tyto pro-
blémy dokézal efektivné vytesit (tj. s polynomidlni ¢asovou slozitosti vzhledem k ve-
likosti vstupu), ale mame dokonce velmi dobré diivody se domnivat, Ze zadny takovy
Casné informatiky: otdzkou, zda P se rovna NP. ZjednodusSené feceno, jde o otazku,
zda kazdou tlohu, u které mizeme efektivné zkontrolovat spravnost feseni, 1ze také
efektivné vyresit. Intuitivné vétsina védci véri, ze je to nepravdépodobné — porovnej-
te napriklad, jak obtizné mize byt rucni vyteseni i jednoduché sudoku a jak snadné
je zkontrolovat, zda bylo sudoku vyfeseno spravné. Tento priklad ndm také ukazuje,
ze znalost toho, jak zkontrolovat spravnost feSeni, ndm obecné nic netfika o tom, jak
efektivné hledat feseni.

V praxi je to ale vlastné celkem jedno. Mezi situacemi, kdy pro nas obtiz-
ny ukol neexistuje zadny efektivni algoritmus a kdy existuje, ale zadny neznéme,
neni z praktického hlediska velky rozdil. Pokud potfebujeme optimalné vytesit za-
dani, jsme v obou piipadech zavisli na hrubé sile, tj. na vyzkousSeni vSech moznos-
ti.

Ne véechna Feseni zaloZena na hrubé sile jsou vsak stejné dobra. Casto miizeme
takova FeSeni zefektivnit tim, Ze neprohleddvame vSechny mozZnosti, ale chytie pre-
sko¢ime co nejvice ¢asti vyhledavani, o kterych vime, ze nevedou k nejlepsimu feseni.
Pro mnoho optimaliza¢nich problému jsme vyvinuli specifické algoritmy, které nejsou
efektivni (jejich Gasova je stale exponencialni vzhledem k velikosti vstupu), ale diky
vhodnému ,ofezani* vyhledavani mohou vyfesSit mnohem vétsi vstupy v rozumném
Case nez pfimé reseni, které zkousi moznosti tplné vSechny.

Nékteri chytii lidé vsak o tom premysleli a uvédomili si: v mnoha z téchto
jednotlivych algoritmt provadime velmi podobné vypadajici optimalizace. Mohli
bychom to néjak zobecnit? V letoSnim roc¢niku olympiddy se budeme zabyvat jednou
z kladnych odpovédi na tuto otazku.

12

Celociselné linedrni programovdni* je zptisob matematického popisu urcitych
optimaliza¢nich problémt. Jeho vyhodou je, Ze né€kdo jiz za nas odvedl veskerou
opravdu naroc¢nou praci — v soucasné dobé existuje nékolik velmi dobfe optimali-
zovanych resictu, které dokazou najit optimalni feseni tlohy zadané takovym mate-
matickym popisem. Navic diky mnoha optimalizacim tyto TeSi¢e ¢asto funguji efek-
tivnéji, nez kdybychom sami psali a vylepSovali specializovany algoritmus pro nas
konkrétni iikol. To ndm dava novy zpiisob feseni obtiznych problémii: misto imple-
mentace vlastniho feseni mizeme premyslet o tom, zda a jak miZeme tento problém
zapsat jako ILP. Pokud se ndm to podafi, mizeme k feSeni naseho problému pouzit
fesi¢ ILP. A piesné to budete délat pii feSeni soutéznich tloh v leto$nim roc¢niku
olympiady.

Formalni definice ILP
V dalgim textu bude slovo konstanta oznacovat jakékoli konkrétni (pfipadné i
zdporné) celé ¢&islo a slovo proménnd bude oznacovat nezndmou, kterd mize nabyvat
jakékoli nezdporné celé hodnoty.
Celociselny linedrni program (ve své zdkladni, tzv. kanonické formé) se sklada
z nasledujicich ¢asti:
® Omezeni: Sada linearnich nerovnosti, kazda ve tvaru

i1 T4+ Ty < by,

kde vSechny a; ; a b; jsou konstanty. ReSeni musi v§echna tato omezeni
splnovat.

e (4l: Linearni vyraz ve tvaru
R A R SR

kde ¢; jsou konstanty a x; jsou proménné. Hodnotu tohoto vyrazu chceme
maximalizovat.

Jakékoli prifazeni hodnot proménnym, pro které jsou splnéna vsSechna omezeni, se
nazyva platnym tesenim. Platna feSeni, pro kterd ma cilovy vyraz nejvétsi moznou
hodnotu, se nazyvaji optimding.

Samoziejmé existuji také ILP, které nemaji optimalni feseni. Mtze to mit dvé
priciny: bud jsou nesplnitelné (napf. mame omezeni x; < 7 a —xy < —8, ¢ili z1 >
8) nebo jsou neomezené (napi. nemdme zadnd omezeni a chceme maximalizovat
hodnotu z1 + 2z5).

* Pro tuto techniku jako celek i pro jednotlivé celodiselné linedrni programy bu-
deme v nasledujicim textu pouzivat zkratku ILP, tedy Integer Linear Programming.

13

Flexibilnéjsi a praktictéjsi definice ILP
Aby se nam s formalismem ILP pracovalo pfijemnéji, dovolime trochu obecnéjsi
tvar programi:

® Povolime také programy, jejichz cilem je minimalizovat hodnotu konkrét-
niho vyrazu, priemz tento vyraz mize obsahovat také konstantni s¢ita-
nec.

® Povolime také omezeni, ve kterych je znaménko < nahrazeno znaménkem
> nebo =.

® V podminkich mizeme provadét vsechny standardni aritmetické upravy,
napf. vynechat s¢itance ve tvaru 0 - x;, libovoln€ pfesouvat sc¢itance mezi
levou a pravou stranou a pouzivat zavorky podle potieby.

N7 v

Rozmyslete si, ze vSechny tyto zmény slouzi pouze k lepsi ¢itelnosti nasich programu:
napfiklad minimalizace + 3y + 1000 je to samé jako jako maximalizace —z — 3y,
podminka 2x — 6y > y — 13 je pouze jiny zptisob zapisu podminky —2x 4+ 7y < 13 a
podminka 2z = 5y je stejné jako dvé podminky 2z < 5y a 2z > by.

Priklad: Kufeci nugety

Stanek prodava tii rtizné baleni kufecich nugett: 6 kusi za 2 eura, 9 kust za
2,90 nebo 20 kust za 6,10. Kolik nejvic nugetd muzeme koupit za 32 eur?

Nespravné hladové feseni: KdyZ spocitame, kolik zaplatime za jeden nuget
v kazdém baleni, nejlepsi moznosti je to nejvétsi. Za 32 eur mizeme koupit 5 nejvét-
§ich baleni, coz ndm da 100 nugetd. To vSak neni optimalni feseni — v8§imnéte si, ze
s timto feSenim nadm kromé 100 nugetti zbude 1,50 eur, za které si nemtizeme koupit
nic jiného. Existuje jiny zptsob, jak lépe vyuzit penize, které mame, a ziskat vice
nuget!

Tento tkol nelze obecné fesit hladové. Nas ptiklad s nugety je zvlastnim pii-
padem dobre znamého typu optimaliza¢niho problému, ktery je obecné znamy pod
nazvem problém batohu. Pro malé vstupy miiZeme najit optimalni feSeni pomoci
dynamického programovani, ale obecné je feseni tohoto problému obtizné.

Linearni program: Ozna¢me x; jako pocet malych baleni, x5 jako pocet stied-
nich baleni a x3 jako pocet velkych baleni, které zakoupime. Nasim cilem je maxi-
malizovat celkovy pocet nuget, které zakoupime, tedy hodnotu 6x; + 9z2 + 20x3.
Musime dodrZet omezeni, Ze celkovd kupni cena nesmi pfekrocit nas rozpocet —
to znamend, %e (v centech, aby vSechna éisla byla celd) musi platit nasledujici:
200x1 + 290z + 61023 < 3200.

Praktické feSeni: N4S linedrni program je zapsdn v syntaxi, které rozumi fesic¢
1lp_solve, takto:

max: 6x_1 + 9x_2 + 20x_3;
200x_1 + 290x_2 + 610x_3 <= 3200;
int x_1, x_2, x_3;

14

Kdyz pozdddme 1lp_solve o feSeni tohoto programu, dostaneme nésledujici
vystup:

Value of objective function: 102.00000000

Actual values of the variables:

x_1 1
x_2 4
x_3 3

Zjistili jsme, ze muzeme ziskat az 102 nuget, kdyz koupime 1 malé, 4 stfedni a
3 velka baleni. Celkova cena nakupu je 31,90, takze na konci budeme mit 102 nugeta
a 10 centid nazbyt.
Vybér Fesice

Pro tento studijni text jsme vybrali jeden konkrétni fesi¢: 1p_solve. V feSenich
priklad® pouzivame syntaxi, kterou tento fesi¢ rozumi.

Na adrese [bttps: //ot.sk/apps/ilp] najdete nékolik riznych navodi, ktery fesic
zvolit a jak jej pouzit k feSeni ILP probléma v zavislosti na vasem preferovaném
operac¢nim systému a programovacim jazyce. Pro domaci kolo si také na internetu
mizete najit libovolny jiny fesi¢ a pouzit ten, pokud se vam nas vybér nelibi.
Priklad: Sudoku

Nékdy misto optimalizace (hledani nejlepsiho feseni z mnoha) nas muze zajimat
pouze nalezeni jakéhokoli platného feSeni nebo rozhodnuti, zda viibec néjaké platné
feSeni existuje. Samozfejmé mizeme i k Feseni takovych problémt pouzit také fesic
ILP: sta¢i mu nedat zddny cil (nebo mu naptiklad dat cil maximalizovat hodnotu
vyrazu ,,04).

Podivejme se na znamy logicky problém: Sudoku. V tomto problému je cilem
vyplnit tabulku 9 x 9 ¢isly od 1 do 9 tak, aby kazdy radek, sloupec a ,,velky“ ¢tverec
3 x 3 obsahoval kazdé ¢islo od 1 do 9 pravé jednou.

V tomto pfikladu ukédzeme, jak muzeme formulovat pravidla sudoku jako ILP.
Zdalo by se, ze bychom potfebovali 81 proménnych: pro kazdy ¢tverec tabulky jednu
proménnou reprezentujici hodnotu, kterd by v ném meéla byt. A ano, to je jeden zpu-
sob, jak formulovat sudoku jako ILP, ale to nechdme na pozdéji. V tomto prikladu
pouzijeme jiny pfistup: pouZijeme 9 x 9 x 9 booleovskych (tj. logickych nebo binar-
nich) proménnych. Proménna x; ; ». bude 1, pokud méa byt hodnota k na soufadnicich
(4,4), nebo 0, pokud tam hodnota k byt nema.

Podivejme se nyni, jak by mohly vypadat vSechny pravidla sudoku, pokud by
byly zapsany jako linearni rovnice a nerovnice.

® V kazdé burce je piesné jedno ¢islo. Pro kazdé ¢ a j tedy plati podminka
Tij1+ Tigo+ -+ x50 =1

e Kazdé ¢islo se v kazdém tadku objevuje presné jednou. Pro kazdé ¢ a k
tedy plati podminka

Ttk +Tiok + -+ Tigr =1

15

https://oi.sk/apps/ilp/

® Pro kazdy sloupec a kazdy ctverec plati analogické podminky jako pro
Fadky.
Pokud nyni chceme vyfesit konkrétni sudoku pomoci 1p_solve, postupujeme
nasledovné:

® Vygenerujeme (napf. pomoci jednoduchého programu napsaného v béz-
ném programovacim jazyce) vSechny vySe uvedené podminky predstavu-
jici obecna pravidla sudoku.

¢ Pridame informaci, Ze vSechny z; ; ;. jsou booleovské proménné. Toho do-
sdhneme pridanim podminky x; ; » < 1 ke kazdé z nich. Proménné, které
mohou nabyvat pouze hodnot 0 a 1, jsou vSak v modelovani problémi
tak bézné, ze pravdépodobné kazdy resitel bude mit specidlni syntaxi pro
pfimé deklarovani takovych proménnych. Napiiklad v 1p_solve staci de-
klarovat takové proménné jako bin misto int.

® Priddme podminky popisujici konkrétni tkol, ktery se snazime vyftesit.
Naptiklad pokud méme ¢islo 7 jiz specifikované v prvnim fadku a tfetim
sloupci tkolu, pfiddme podminku z; 37 = 1.

Priklad: Sudoku podruhé

Jak by vypadalo modelovani sudoku, kdybychom chtéli pouzit proménnou v; ;
pro kazdou bunku, jejiz hodnota by pfimo odpovidala hodnoté nalezené v piislusné
buiice? Je zfejmé, Ze potfebujeme podminky v;; > 1 a v;; < 9. Kromé téchto
podminek by stacilo pfidat podminky, které stanovi, ze nékteré pary bunék nesmi
mit stejnou hodnotu. Budeme potifebovat pomérné dost takovych podminek: jednu
pro kazdy par bunék ve stejném rfadku, ve stejném sloupci a ve stejném ctverci 3 x 3.
Napiiklad pro dvé pole (i,z) a (i,y) v fadku ¢ potfebujeme podminku v; o # v; .
Zde vsak nardzime na problém: tato podminka nemé zadnou z povolenych forem a
nemuzeme ji primo vyjadrit pomoci povolenych podminek.

Pozadovanou podminku mutzeme zapsat jako logické OR dvou podminek: musi
platit bud v; , < x;,, nebo v; 5 > v; . Jelikoz vSechna v; ; jsou celd ¢isla, mizeme
tyto podminky upravit do povolené formy: musi platit bud v; , < v;, — 1, nebo
Vi,x Z 'Ui,y -+ 1.

To vsak stale neni v poradku: v ILP musi byt vSsechny podminky splnény sou-
¢asné. To odpovida logickému AND, nikoli logickému OR. Co s tim muzeme délat?

MiuZeme pouzit maly trik. Zavedeme novou bindrni proménnou r (spravné
bychom ji méli nazvat napiiklad r; ;; 4, protoze budeme potfebovat jednu novou
proménnou pro kazdou dvojici proménnych, které by nemély byt stejné, pro lepsi
Citelnost ale indexy vynechme). Hodnota r ndm fekne, zda by méla byt mensi prvni
nebo druhd z hodnot v. Zvazme nyni néasledujici dvé podminky:

Uiz — Uiy > 1 — 107
Viy — Vg >1—10(1—r)=10r—9
Pokud r = 0, dostaneme podminky v; , — v;y > 1 & v; 4 — Vs > —9. Prvni z nich

fiké, Ze v; » > v; 4 & druhd je trividlné splnéna pro libovolné v; ;,v; , € {1,2,...,9}

16

(konstantu 10 jsme zvolili tak, aby toto platilo, vyuzivame tedy skute¢nosti, Ze zname
rozsah hodnot, kterych mohou v; , a v;, nabyvat).

Naopak, pokud zvolime r = 1, dostaneme jednu trividlné splnénou podminku
a jednu, kterd 1ikd, ze v;, < v;,. Priddnim této nové proménné r a dvou vyse
uvedenych podminek jsme dosdhli toho, co jsme chtéli: pro libovolné v;, # v;,
mizeme splnit obé tyto podminky, zatimco pro v; , = v;, neni mozné splnit obé
najednou.

Priklad: Co ve formalismu ILP nevyjadfime

Maéme letadlo, se kterym chceme letét 1000km z jednoho letisté na druhé.
V ramci povolenych rozsahti odpovidajicich modelu letadla muzeme zvolit letovou
hladinu h (vysku v km, ve které budeme létat, v rozmezi 10 az 13 km) a letovou
rychlost v (v km/h, v rozmezi 600 az 900 km/h). Chtéli bychom minimalizovat
néklady na let, tj. spotfebu paliva.

Toto lze zapsat pomoci vhodnych vzorct jako optimaliza¢ni problém. Ve velmi
zjednodusené podobé by to mohlo vypadat néjak takto: Doba letu bude 1000/v.
Pokud letime ve vysce h, optimalni rychlost vzhledem k odporu vzduchu je vop(h) =
540 + 30h. Vykon motoru je nejlepsi ve vysce h = 11,5km. Odchylka od téchto
parametru zvysuje spotfebu paliva, ale mize nas dostat k cili rychleji. Spotfeba
paliva (v kg/h) lze proto vyjadiit rovnici 2000 + 200(h — 11,5)% + 0,05(v — vept (h))?.
Celkova spotieba paliva je sou¢inem této hodnoty a doby letu.

Ackoli se jedné o piesné matematické vyjadieni optimalizacniho problému, je
zde jeden hacek: omezeni pro h a v jsou linearni, ale funkce, jejiz hodnotu se snazime
optimalizovat, neni linedrni funkci proménnych h a v. Resi¢ ILP nam proto s takto
konkrétné zformulovanym problémem nepomize.

Pro nazornost dodejme, zZe ani mnohem jednodussi vyraz h - v neni linearni,
protoze je to soucin dvou proménnych.

17

Knihovna zakladnich algoritmu

Pokud ve svém Tfeseni teoretické tlohy chcete pouzit né€jaky zakladni algoritmus,
jako tfeba binarni vyhledévani v uspordadaném poli, nemusite ho detailné popisovat.
Nékdy ale nemusi byt jasné, které algoritmy jsou ,dostatecné zakladni“.

Uvéadime proto seznam algoritmii a datovych struktur, které v MO-P pova-
zujeme za natolik zndmé, Ze se na né v TeSeni staci odkazat a neni potieba uvadét
detaily. Pokud si algoritmus potfebujete néjak prizptisobit, staci popsat pouze zmény
od zakladni verze.

Ostatni algoritmy je potieba popsat celé.

Matematika

Euklidav algoritmus

e Nalezeni nejvétsiho spole¢ného délitele ¢isel x, y
e Cas O(logz + logy)

Eratosthénovo sito
® Nalezeni prvocisel od 2 do n
e Cas O(nloglogn)
Faktorizace
¢ Rozklad ¢isla n na soudin prvocisel zkouSenim déliteld az po /n

e Cas O(y/n)

Posloupnosti
Oznac¢me n délku posloupnosti.

Merge sort
® Ttidéni slévanim
e Cas O(nlogn)
Bucket sort
® Prihradkové t¥idéni
e Cas O(n +r), kde n je pocet prvki a r je jejich rozsah
Binarni vyhledavani
® Nalezeni prvku x v setfidéné posloupnosti, pfipadné nejvétsiho prvku < x
e Cas O(logn)
Grafy
Oznac¢me n pocet vrcholt grafu a m pocet jeho hran.
Prohledavani do hloubky
e Cas O(n+m)

18

Prohledavani do $ifky

e Nalezeni nejkratsi cesty ze startu do vSech vrchol v neohodnoceném grafu
e Cas O(n+m)

Dijkstrav algoritmus

e Nalezeni nejkratsi cesty ze startu do vSech vrchol v ohodnoceném grafu
s nezapornymi délkami hran

e Cas O(m +nlogn)
Bellman-Forduv algoritmus

e Nalezeni nejkratsi cesty ze startu do vsech vrcholti v ohodnoceném grafu
e Cas O(nm)

Floyduv-Warshallav algoritmus

e Nalezeni nejkratsi cesty z kazdého do kazdého vrcholu v ohodnoceném
grafu

e Cas O(n?)
Jarnikuv algoritmus

® Nalezeni minimalni kostry pomoci fezi a haldy
e Cas O(m +nlogn)

Kruskaluv algoritmus

® Nalezeni minimélni kostry pomoci Disjoint set union

e Cas O(mlogn)
Topologické usporadani

e Usporadani vSech vrcholt orientovaného acyklického grafu tak, aby hrany
vedly po sméru uspotradani

e Cas O(n +m)
Geometrie
Zaklady

e Vzdalenost dvou bodu (¢as O(1))

e Vzdélenost bodu a pfimky (éas O(1))

e Prinik pfimek, thly jimi svirané (¢as O(1))

e Obsah mnohothelniku (¢as O(n), kde n je pocet vrchold)

Konvexni obal

e Nalezeni konvexniho obalu n boda

e Cas O(nlogn), piipadné O(n) s jiz sefazenymi body

19

Datové struktury

U datovych struktur uvadime operace, které podporuji, s jejich slozitostmi.
Fronta

e Enqueue: Pridani prvku na konec v O(1)

® Dequeue: Odebrani prvku ze za¢atku v O(1)
Zasobnik

® Push: Pfidani prvku na konec v O(1)
® Pop: Odebrani prvku z konce v O(1)

Nafukovaci pole

e Append: P¥idani prvku v amortizované O(1)
Prefixové souéty

® Build: Vybudovani v O(n)

® Query: Dotaz na soucet intervalu v O(1)
2D prefixové soucty

® Build: Vybudovani v O(nm), kde n a m jsou strany miizky
¢ Query: Dotaz na soucet obdélnika v O(1)

Vyhledavaci strom

® Reprezentace mnoziny prvki, které umime porovnavat.

e Find: Nalezeni pozice daného prvku, pfipadné zahléSeni jeho neexistence
v O(logn)

o Insert: P¥idani prvku v O(logn)

® Delete: Smazani prvku v O(logn)
Pismenkovy strom (Trie)

® Reprezentace mnoziny fetézci nad konstantné velkou abecedou.
e Find: Zjisténi, zdali je slovo ve stromé v O(¢), kde ¢ je délka slova
e Insert: Pidani slova v O(¥)

® Delete: Smazani slova v O(¢)
Binarni halda

® Min: Vraceni minima v O(1)
e FxtractMin: Odstranéni minima v O(logn)
o Insert: P¥idéni prvku v O(logn)

® Delete: Smazani prvku v O(logn), zndme-li jeho pozici v haldé

20

Disjoint set union

® [ind: Nalezeni reprezentanta mnoziny obsahujici dany vrchol v amorti-
zované O(a(n)), kde « je inverzni Ackermannova funkce, ktera sice roste
do nekonecna, ale mnohem pomaleji nez logaritmus.

® Union: Sjednoceni dvou mnozin obsahujicich vrcholy u a v v amortizované
O(a(n))

Intervalovy strom (s linou aktualizaci)

e Pro zvolenou asociativni operaci (minimum, maximum, soucet, ...) a po-
sloupnost prvka z1,...,z,

® Build: Vybudovani v O(n)

® Query: Urceni hodnoty operace provedené na vsechny prvky s indexy v
daném intervalu v O(logn)

e UpdatePoint: Aktualizace prvku v O(logn)

e Je-li operace minimum, maximum ¢i soucet, mizete dale bez popisu pouzi-
vat i operaci UpdateRange: Ke v§em hodnotam s indexy v daném intervalu
pricte zadané ¢islo, pracuje v ¢ase O(logn).

e Potiebuje-li vase feSeni operaci UpdateRange v jinych situacich (jind aso-
ciativn{ operace, jiny druh zmény hodnot na intervalu), musite vysvétlit,
jak ji implementujete.

21

