
75. ročník Matematické olympiády – 2025/2026

Úlohy krajského kola kategorie P

Krajské kolo 75. ročníku MO kategorie P se koná v úterý 20. 1. 2026 v dopo-
ledních hodinách. Na řešení úloh máte 4 hodiny čistého času. V krajském kole MO-P
se neřeší žádná praktická úloha, pro zajištění rovných podmínek řešitelů ve všech
krajích je použití počítačů při soutěži zakázáno (s výjimkou nahrávání řešení do ode-
vzdávacího systému). Zakázány jsou rovněž jakékoliv další pomůcky kromě psacích
potřeb (např. knihy, výpisy programů, kalkulačky, mobilní telefony). Řešení každé
úlohy vypracujte na samostatný list papíru.

Řešení každé úlohy má obsahovat popis řešení, to znamená slovní popis prin-
cipu zvoleného algoritmu, argumenty zdůvodňující jeho správnost (případně důkaz
správnosti algoritmu), diskusi o efektivitě vašeho řešení (časová a paměťová složi-
tost). Není možné odkazovat se na vaše řešení úloh domácího kola.

Do řešení nemusíte psát odpovídající program, algoritmus stačí zapsat ve vhod-
ném pseudokódu nebo dokonce jenom slovně, je-li popis dostatečně podrobný a sro-
zumitelný. Nemusíte detailně popisovat jednoduché operace jako vstupy, výstupy,
implementaci jednoduchých matematických vztahů, vyhledávání v poli, třídění apod.
Podrobnější seznam algoritmů a datových struktur, které považujeme za obecně zná-
mé a můžete je používat bez podrobnějšího popisu, naleznete na konci zadání.

Za každou úlohu můžete získat maximálně 10 bodů. Hodnotí se nejen správ-
nost řešení, ale také kvalita jeho popisu a efektivita zvoleného algoritmu. Algoritmy
posuzujeme podle jejich časové složitosti, tzn. závislosti doby výpočtu na velikosti
vstupních dat. Záleží přitom pouze na řádové rychlosti růstu této funkce. V zadání
každé úlohy najdete přibližné limity na velikost vstupních dat. Efektivním vyřešením
úlohy rozumíme to, že váš program spuštěný s takovými daty na současném běžném
počítači dokončí výpočet během několika sekund.

Vzorová řešení úloh naleznete krátce po soutěži na webových stránkách olympi-
ády https://mo.mff.cuni.cz/p/. Na stejném místě bude zveřejněn i seznam úspěšných
řešitelů krajského kola a seznam řešitelů postupujících do ústředního kola. Svá opra-
vená řešení s komentáři opravovatelů najdete v OSMO.

1

https://mo.mff.cuni.cz/p/


P-II-1 Sisyfos a balvany

Známého řeckého krále Sisyfa bohové odsoudili k tomu, aby navěky marně valil
balvan do kopce. Nedávno mu ale díky změnám v pracovních předpisech byli nuceni
tento trest upravit a místo toho nyní balvany přenáší a řadí dle váhy.

Bohové ho postavili na začátek řady n balvanů očíslovaných zleva doprava od
0 do n − 1; hmotnost balvanu stojícího na pozici i budeme označovat jako H[i].
Úkolem Sisyfa je seřadit balvany od nejlehčího po nejtěžší, tedy tak, aby na konci
platilo H[0] ≤ H[1] ≤ · · · ≤ H[n − 1]. Aby se vyhnul nutnosti přenášet balvany na
dlouhé vzdálenosti, rozhodl se Sisyfos postupovat následovně:

• Jde podél balvanů zleva doprava.
• Kdykoli narazí na balvan, který má bezprostředně nalevo od sebe těžší

balvan, vymění je, těžší balvan posune o jednu pozici doprava a lehčí
balvan o jednu pozici doleva. Formálněji řečeno, když Sisyfos dorazí na
pozici i ≥ 1 a vidí, že H[i− 1] > H[i], prohodí hodnoty H[i− 1] a H[i].
• Poté se vrátí na začátek řady (přitom balvany neprohazuje).

Tomuto postupu budeme říkat kolo. Sisyfos ho opakuje až do chvíle, kdy už
v nějakém kole neprovede žádnou další výměnu.

Soutěžní úloha
Tato úloha má několik podúloh; můžete řešit každou zvlášť, ale i napsat algo-

ritmus, který vyřeší podúlohy b) a c) zároveň.

a) (2 body) Dokažte, že pro libovolnou posloupnost balvanů Sisyfos po ko-
nečném počtu kol skončí.

b) (3 body) Ukázalo se, že Sisyfos nezvládne přesunout balvany, jejichž hmot-
nost je větší než w. Proto upravil svůj postup tak, že pokud by měl pro-
hodit dva balvany, z nichž je alespoň jeden moc těžký, místo toho nic
neudělá a posune se na další pozici.

Vstup tvoří čísla n, w a pole H obsahující hmotnosti balvanů v jejich
počátečním pořadí. Napište algoritmus, který určí hmotnosti balvanů na
jednotlivých pozicích poté, co Sisyfos skončí. Výstupem je tedy konečný
obsah pole H.

c) (5 bodů) Napište algoritmus, který pro stejný vstup jako v podúloze b)
určí, kolik kol bude Sisyfův postup trvat pro tuto konkrétní posloupnost
balvanů a hodnotu w. Nezapomeňte dokázat správnost vašeho algoritmu!

Připomínáme, že nemusíte řešit detaily implementace vstupů a výstupů; mů-
žete tedy například předpokládat, že na začátku běhu algoritmů řešících podúlohy
b) a c) už máte vstupy načtené v poli H a proměnných n a w.

2



Bodování
Plný počet bodů za podúlohy b) a c) získají řešení s časovou složitostíO(n log n),

tedy efektivní pro n ≤ 105. Řešení s časovou složitostí O(n2), tedy efektivní pro
n ≤ 5 000, získají 1 bod za každou z těchto podúloh. Jeden bod strhneme algo-
ritmům, které fungují pouze za předpokladu, že všechny hmotnosti v poli H jsou
navzájem různé.

Příklady
Nechť n = 9 a balvany mají po řadě hmotnosti 10, 30, 20, 60, 50, 40, 80, 80, 70.

Nejprve uvažujme situaci, kdy Sisyfos může přesunout všechny balvany, tj. w ≥ 80.
V prvním kole by Sisyfos postupoval následovně:

• Na pozici 1 není třeba nic dělat.
• Na pozici 2 je balvan lehčí než ten vlevo:

10

0

30

1

20

2

60

3

50

4

40

5

80

6

80

7

70

8

• Tyto balvany budou prohozeny:

10

0

20

1

30

2

60

3

50

4

40

5

80

6

80

7

70

8

• Na pozici 3 není třeba nic dělat.
• Na pozici 4 je balvan lehčí než ten vlevo:

10

0

20

1

30

2

60

3

50

4

40

5

80

6

80

7

70

8

• Po jejich výměně se vyskytuje další takový případ na pozici 5:

10

0

20

1

30

2

50

3

60

4

40

5

80

6

80

7

70

8

• Na pozicích 6 a 7 není třeba nic dělat.
• Na pozici 8 provede další výměnu:

10

0

20

1

30

2

50

3

40

4

60

5

80

6

80

7

70

8

• Na konci prvního kola vypadá pole H takto:

10

0

20

1

30

2

50

3

40

4

60

5

80

6

70

7

80

8

3



Ve druhém kole by Sisyfos provedl výměnu na pozici 4 (balvany o hmotnosti 50 a
40) a poté na pozici 7 (balvany o hmotnosti 80 a 70).

Ve třetím kole by Sisyfos neprovedl žádné výměny. Proces by tedy skončil po třech
kolech seřazeným polem H:

10

0

20

1

30

2

40

3

50

4

60

5

70

6

80

7

80

8

Kdyby byl Sisyfos o něco slabší (w = 59), postupoval by v prvním kole následovně:

• Na pozici 1 není třeba provádět žádnou akci.
• Na pozici 2 provede výměnu (hmotnosti 30 a 20).
• Na pozici 3 není třeba nic dělat.
• Na pozici 4 nemůže provést výměnu, takže neudělá nic.
• Na pozici 5 provede výměnu (hmotnosti 50 a 40).
• Na pozicích 6 a 7 není třeba provádět žádnou akci.
• Na pozici 8 nelze provést výměnu, takže tyto dva balvany také zůstanou

na svém místě.
• Na konci prvního kola vypadá pole H následovně:

10

0

20

1

30

2

60

3

40

4

50

5

80

6

80

7

70

8

Ve druhém kole by Sisyfos neprovedl žádné výměny, proces by tedy skončil po dvou
kolech ve výše zobrazeném stavu.

Kdyby byl Sisyfos ve stejné výchozí situaci ještě slabší (w = 27), neprovedl by
v prvním kole žádné změny a celý proces by ihned skončil.

4



P-II-2 Obdélník

Augiáš se rozhodl postavit nový chlév ve tvaru obdélníku pro svůj dobytek.
Již ze dřívějška mu na jeho pozemku stojí několik sloupů, na něž mohou být stěny
chléva upevněny. Jelikož je nejen nepořádný, ale i lakomý, chtěl by k tomuto účelu
využít všechny tyto sloupy.

Soutěžní úloha
V rovině máte dáno n ≥ 10 navzájem různých bodů, udávajících pozice sloupů.

Navrhněte algoritmus, který určí, zda všechny tyto body leží na obvodu nějakého
(libovolně otočeného) obdélníku. Pokud ano, najděte jeden takový obdélník.

Formát vstupu
Na prvním řádku vstupu je přirozené číslo n. Následuje n řádků popisujících

zadané body; na i-tém z nich jsou dvě celá čísla xi a yi, která udávají souřadnice
i-tého bodu.

Formát výstupu
Vypište buď řetězec „NEÿ, jestliže hledaný obdélník neexistuje, nebo souřadnice

tří z vrcholů nějakého obdélníka, na jehož obvodu leží všechny zadané body. Tyto
souřadnice nemusí být celočíselné.

Bodování
Při psaní algoritmu můžete předpokládat, že všechny operace s reálnými čísly

jsou přesné. Jinými slovy, není třeba řešit zaokrouhlovací chyby, které by mohly
nastat při praktické implementaci.

Abyste získali plný počet bodů, musíte najít řešení s časovou složitostí O(n),
tedy efektivní pro n ≤ 107, a dokázat jeho správnost. Řešení s časovou složitostí
O(n log n) (efektivní pro n ≤ 105) mohou získat až 8 bodů a řešení s časovou složitostí
O(n2) (efektivní pro n ≤ 5 000) mohou získat až 6 bodů. Pomalejší správná řešení
mohou získat až 4 body.

5



Příklady
Vstup:
10
0 0
1 1
2 2
3 3
9 9
8 8
7 7
6 6
5 5
4 4

Výstup:
0 0
10 10
11 9

V tomto příkladu body leží na jedné
přímce, řešením je tedy libovolný obdél-
ník, jehož jedna strana obsahuje
všechny zadané body.

−2

−1

0

1

2

3

4

5

6

7

8

9

10

11

−3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12

y

x

Vstup:
10
0 0
1 0
2 0
3 0
0 1
1 1
2 1
3 1
0 2
3 2

Výstup:
NE

Žádný obdélník nemá na hranici všech-
ny zadané body.

0

1

2

0 1 2 3

y

x

6



Vstup:
10
-2 0
0 1
2 2
6 4
9 3
7 0
3 -2
1 -3
-1 -3
-2 -1

Výstup:
-2.4 -0.2
8 5
9.8 1.4

Zde existuje jediné řešení.

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

−3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12

y

x

7



P-II-3 Platónova Akademie

Gratulujeme, byli jste přijati ke studiu na Platónově Akademii! Nechcete ale
ve školních lavicích strávit zbytečně moc času, rádi byste si proto rozvrhli předměty
tak, abyste dostudovali co nejdříve.

Soutěžní úloha
Abyste vystudovali, musíte absolvovat n předmětů, očíslovaných od 0 do n−1.

Předměty musíte studovat v předepsaném pořadí, tj. pro žádné i < j nesmíte začít
studovat předmět j dříve než předmět i (můžete je ale začít studovat zároveň).

Absolvování každého z předmětů vyžaduje dva po sobě jdoucí kalendářní měsíce
(první měsíc chodíte na přednášky a ten druhý skládáte zkoušky). Předmět i vám
zabere A[i] hodin během prvního měsíce a B[i] hodin během druhého měsíce. V rámci
každého měsíce můžete studovat i více předmětů, nesmí vám ale dohromady zabrat
více než p hodin. Speciálně tedy nesmíte začít dohromady studovat předměty, které
by vám ve druhém (zkouškovém) měsíci zabraly více než p hodin, i kdyby se vám
jejich první (přednáškový) měsíc do limitu p hodin vešel.

Navrhněte algoritmus, který vypočítá minimální počet měsíců potřebných k do-
studování.

Formát vstupu
Na prvním řádku vstupu jsou přirozená čísla p a n. Na i-tém z n následujících

řádků jsou dvě nezáporná celá čísla udávající hodnoty A[i− 1] a B[i− 1]; obě tyto
hodnoty jsou menší nebo rovny p.

Formát výstupu
Na výstup vypište jediné číslo, minimální počet měsíců, za něž lze dostudovat.

Bodování
Plný počet bodů mohou získat řešení s časovou složitostí O(n2), tedy efektivní

pro p ≤ 109 a n ≤ 5 000. Nanejvýš 8 bodů mohou získat řešení s časovou složitostí
O(n3), tedy efektivní pro p ≤ 109 a n ≤ 300. Nanejvýš 6 bodů mohou získat řešení
s časovou složitostí O(n2p) či obdobnou, tedy efektivní pro p, n ≤ 300. Nanejvýš 4
body mohou získat řešení s časovou složitostí O(2n) či obdobnou, tedy efektivní pro
p ≤ 109 a n ≤ 12.

8



Příklady
Vstup:
1000 4
300 100
300 100
100 800
700 200

Výstup:
3

První měsíc bychom sice mohli začít studovat předměty 0, 1 a 2 dohromady, pak
bychom ale na studium předmětu 3 měli čas až třetí a čtvrtý měsíc. Lepší bude začít
v prvním měsíci pouze předměty 0 a 1 (to nám zabere 300 + 300 = 600 hodin) a
předměty 2 a 3 začít studovat ve druhém měsíci. Ve druhém měsíci budeme potřebo-
vat 100 + 100 = 200 hodin na dokončení předmětů 0 a 1 a 100 + 700 = 800 hodin na
zahájení studia předmětů 2 a 3, což se nám dohromady vejde do limitu 1000 hodin.
Ve třetím měsíci nám dostudování předmětů 2 a 3 zabere 800 + 200 = 1000 hodin.

Vstup:
1000 3
100 800
100 800
100 800

Výstup:
4

Žádné dva předměty nemůžeme začít studovat naráz, protože ve druhém měsíci
bychom na jejich dokončení potřebovali 800 + 800 = 1600 > 1000 hodin. Nejlepší je
tedy každý měsíc začít studovat jeden předmět.

Vstup:
1000 5
500 499
500 500
1 1
500 500
499 500

Výstup:
4

9



P-II-4 Řešič to opět vyřeší

K této úloze se vztahuje studijní text uvedený na následujících stranách, který
je stejný jako v domácím kole. Úloha se skládá ze dvou nezávislých podúloh, řešit
můžete kteroukoliv z nich nebo obě dvě v libovolném pořadí.

Podúloha A: Slabé závislosti (2 body)
Připomeňme zadání úlohy z domácího kola: Máme k dispozici e eur. Existuje

n projektů (očíslovaných od 1 do n), do kterých můžeme investovat; každý z nich
buď podpoříme, nebo ne. U každého projektu známe částku si potřebnou k jeho
podpoře a hodnotu vi, kterou získáme zpět jako výnos, pokud jej podpoříme. Výnos
obdržíme až na konci realizace všech podpořených projektů, součet hodnot si těchto
projektů tedy nemůže přesáhnout e.

Pro krajské kolo navíc mezi projekty mohou být slabé závislosti v následujícím
tvaru: Projekt xi můžeme podpořit pouze tehdy, pokud také podpoříme alespoň
jeden z projektů yi,1, yi,2, . . ., yi,zi . Například projekt pěstování bio zelí nelze usku-
tečnit, pokud nepodpoříme ani projekt instalace automatického zavlažování, ani
projekt 3D tisku dvojručných kbelíků.

Popište, jak pro danou sadu projektů a seznam slabých závislostí mezi nimi
sestavit ILP, jehož optimální řešení odpovídá sadě projektů, jejichž podpora nám
přinese maximální celkový zisk. Popište celý ILP, včetně částí, které zůstávají stejné
jako v domácím kole.

Příklad
Mějme e = 110 000 eur a n = 5 projektů. Částky si na jejich podporu jsou po

řadě 50 000, 50 000, 20 000, 40 000, 49 999 a výnosy vi jsou po řadě 50 100, 95, 26 000,
900 000, 1.

Mezi projekty jsou dvě slabé závislosti:

• projekt 4 závisí na projektu 3
(tedy x1 = 4, z1 = 1 a y1,1 = 3)
• projekt 3 závisí na projektech 2 a/nebo 5

(tedy x2 = 3, z2 = 2, y2,1 = 2 a y2,2 = 5).

Optimální řešení je podpořit projekty 2, 3 a 4, na konci tak budeme mít 816 095
eur.

Pokud bychom ve stejné situaci měli jen 100 000 eur, optimální by bylo podpořit
jen projekt 1.

10



Podúloha B: Lyžařské sjezdovky (8 bodů)
Kolem horské vesnice se nachází k kopců očíslovaných od 1 do k, na kterých

můžeme budovat lyžařské sjezdovky. Na každý kopec se nám ale sjezdovky vejdou
nejvýše tři . Každá sjezdovka postavená na kopci i musí mít celočíselnou délku, a to
alespoň `i a nanejvýš ui metrů. Postavení každého metru sjezdovky na kopci i nás
stojí ci eur. Navíc bychom chtěli, aby celková délka všech sjezdovek v celém lyžařském
areálu byla přesně d metrů.

Popište, jak sestavit ILP, který bude mít řešení, právě když je to možné. Op-
timální řešení tohoto ILP navíc musí odpovídat nejlevnějšímu možnému způsobu
výstavby požadované sady sjezdovek.

Jednodušší varianty
Můžete se také rozhodnout řešit jednu z následujících jednodušších variant této

podúlohy:

• Za vyřešení varianty, v níž je na každém kopci možné postavit nejvýše
jednu sjezdovku, můžete získat až 6 bodů.
• Za vyřešení varianty, v níž všechny kopce splňují `i = ui, můžete získat

až 3 body.

Pokud odevzdáte řešení jedné z těchto jednodušších variant, uveďte to prosím
výrazně hned na jeho začátku.

Příklad
Máme k = 2 kopce:

• Na prvním se dají stavět sjezdovky délky `1 = 1000 až u1 = 1100
metrů, a to metr za c1 = 100 eur,
• na druhém sjezdovky délky `2 = 300 až u2 = 400 metrů, a to metr

za c2 = 70 eur.

Chceme areál s 2410 metry sjezdovek.

Jedním optimálním řešením je postavit na prvním kopci dvě sjezdovky délek
1003 a 1007 metrů a na druhém kopci jednu sjezdovku délky 400 metrů. Dohromady
nás to bude stát 229 000 eur.

11



Studijní text: Celočíselné lineární programování
V letošním ročníku olympiády se budeme zabývat optimalizačními problémy,

tedy problémy, které mají mnoho různých řešení, a naším úkolem je najít to nejlepší.
Například nás může zajímat:

• Jak nejlevněji navštívit všechna města na Slovensku?
• Kolik krabic potřebuji k zabalení všech svých knih při stěhování?
• Jaká je velikost největší podmnožiny řešitelů letošní MO-P, ve které se

všichni navzájem znají?

Mnoho optimalizačních problémů má jednu společnou nepříjemnou vlastnost:
neznáme pro ně žádné efektivní algoritmické řešení. Empiricky si dovolíme tvrdit, že
do této smutné kategorie spadá drtivá většina optimalizačních problémů, s nimiž se
setkáváme všude v praxi – ať už v počítačích (např. plánování procesů, směrování
paketů v sítích) nebo v reálném životě (např. logistika všeho druhu, optimalizace
nákladů nebo různé problémy v bioinformatice). Mimochodem, všechny tři výše
uvedené problémy sem také patří.

Situace je ještě horší. Nejenže neznáme žádný algoritmus, který by tyto pro-
blémy dokázal efektivně vyřešit (tj. s polynomiální časovou složitostí vzhledem k ve-
likosti vstupu), ale máme dokonce velmi dobré důvody se domnívat, že žádný takový
algoritmus neexistuje. To souvisí s jednou z nejdůležitějších otevřených otázek sou-
časné informatiky: otázkou, zda P se rovná NP. Zjednodušeně řečeno, jde o otázku,
zda každou úlohu, u které můžeme efektivně zkontrolovat správnost řešení, lze také
efektivně vyřešit. Intuitivně většina vědců věří, že je to nepravděpodobné – porovnej-
te například, jak obtížné může být ruční vyřešení i jednoduché sudoku a jak snadné
je zkontrolovat, zda bylo sudoku vyřešeno správně. Tento příklad nám také ukazuje,
že znalost toho, jak zkontrolovat správnost řešení, nám obecně nic neříká o tom, jak
efektivně hledat řešení.

V praxi je to ale vlastně celkem jedno. Mezi situacemi, kdy pro náš obtíž-
ný úkol neexistuje žádný efektivní algoritmus a kdy existuje, ale žádný neznáme,
není z praktického hlediska velký rozdíl. Pokud potřebujeme optimálně vyřešit za-
dání, jsme v obou případech závislí na hrubé síle, tj. na vyzkoušení všech možnos-
tí.

Ne všechna řešení založená na hrubé síle jsou však stejně dobrá. Často můžeme
taková řešení zefektivnit tím, že neprohledáváme všechny možnosti, ale chytře pře-
skočíme co nejvíce částí vyhledávání, o kterých víme, že nevedou k nejlepšímu řešení.
Pro mnoho optimalizačních problémů jsme vyvinuli specifické algoritmy, které nejsou
efektivní (jejich časová je stále exponenciální vzhledem k velikosti vstupu), ale díky
vhodnému „ořezáníÿ vyhledávání mohou vyřešit mnohem větší vstupy v rozumném
čase než přímé řešení, které zkouší možnosti úplně všechny.

Někteří chytří lidé však o tom přemýšleli a uvědomili si: v mnoha z těchto
jednotlivých algoritmů provádíme velmi podobně vypadající optimalizace. Mohli
bychom to nějak zobecnit? V letošním ročníku olympiády se budeme zabývat jednou
z kladných odpovědí na tuto otázku.

12



Celočíselné lineární programování * je způsob matematického popisu určitých
optimalizačních problémů. Jeho výhodou je, že někdo již za nás odvedl veškerou
opravdu náročnou práci – v současné době existuje několik velmi dobře optimali-
zovaných řešičů, které dokážou najít optimální řešení úlohy zadané takovým mate-
matickým popisem. Navíc díky mnoha optimalizacím tyto řešiče často fungují efek-
tivněji, než kdybychom sami psali a vylepšovali specializovaný algoritmus pro náš
konkrétní úkol. To nám dává nový způsob řešení obtížných problémů: místo imple-
mentace vlastního řešení můžeme přemýšlet o tom, zda a jak můžeme tento problém
zapsat jako ILP. Pokud se nám to podaří, můžeme k řešení našeho problému použít
řešič ILP. A přesně to budete dělat při řešení soutěžních úloh v letošním ročníku
olympiády.

Formální definice ILP
V dalším textu bude slovo konstanta označovat jakékoli konkrétní (případně i

záporné) celé číslo a slovo proměnná bude označovat neznámou, která může nabývat
jakékoli nezáporné celé hodnoty.

Celočíselný lineární program (ve své základní, tzv. kanonické formě) se skládá
z následujících částí:

• Omezení: Sada lineárních nerovností, každá ve tvaru

ai,1 · x1 + · · ·+ ai,n · xn ≤ bi,

kde všechny ai,j a bi jsou konstanty. Řešení musí všechna tato omezení
splňovat.

• Cíl: Lineární výraz ve tvaru

c1 · x1 + · · ·+ cn · xn,

kde ci jsou konstanty a xi jsou proměnné. Hodnotu tohoto výrazu chceme
maximalizovat.

Jakékoli přiřazení hodnot proměnným, pro které jsou splněna všechna omezení, se
nazývá platným řešením. Platná řešení, pro která má cílový výraz největší možnou
hodnotu, se nazývají optimální.

Samozřejmě existují také ILP, které nemají optimální řešení. Může to mít dvě
příčiny: buď jsou nesplnitelné (např. máme omezení x1 ≤ 7 a −x1 ≤ −8, čili x1 ≥
8) nebo jsou neomezené (např. nemáme žádná omezení a chceme maximalizovat
hodnotu x1 + 2x2).

* Pro tuto techniku jako celek i pro jednotlivé celočíselné lineární programy bu-
deme v následujícím textu používat zkratku ILP, tedy Integer Linear Programming.

13



Flexibilnější a praktičtější definice ILP
Aby se nám s formalismem ILP pracovalo příjemněji, dovolíme trochu obecnější

tvar programů:

• Povolíme také programy, jejichž cílem je minimalizovat hodnotu konkrét-
ního výrazu, přičemž tento výraz může obsahovat také konstantní sčíta-
nec.
• Povolíme také omezení, ve kterých je znaménko ≤ nahrazeno znaménkem
≥ nebo =.
• V podmínkách můžeme provádět všechny standardní aritmetické úpravy,

např. vynechat sčítance ve tvaru 0 · xi, libovolně přesouvat sčítance mezi
levou a pravou stranou a používat závorky podle potřeby.

Rozmyslete si, že všechny tyto změny slouží pouze k lepší čitelnosti našich programů:
například minimalizace x + 3y + 1000 je to samé jako jako maximalizace −x − 3y,
podmínka 2x− 6y ≥ y− 13 je pouze jiný způsob zápisu podmínky −2x+ 7y ≤ 13 a
podmínka 2x = 5y je stejná jako dvě podmínky 2x ≤ 5y a 2x ≥ 5y.

Příklad: Kuřecí nugety
Stánek prodává tři různé balení kuřecích nugetů: 6 kusů za 2 eura, 9 kusů za

2,90 nebo 20 kusů za 6,10. Kolik nejvíc nugetů můžeme koupit za 32 eur?

Nesprávné hladové řešení: Když spočítáme, kolik zaplatíme za jeden nuget
v každém balení, nejlepší možností je to největší. Za 32 eur můžeme koupit 5 největ-
ších balení, což nám dá 100 nugetů. To však není optimální řešení – všimněte si, že
s tímto řešením nám kromě 100 nugetů zbude 1,50 eur, za které si nemůžeme koupit
nic jiného. Existuje jiný způsob, jak lépe využít peníze, které máme, a získat více
nugetů!

Tento úkol nelze obecně řešit hladově. Náš příklad s nugety je zvláštním pří-
padem dobře známého typu optimalizačního problému, který je obecně známý pod
názvem problém batohu. Pro malé vstupy můžeme najít optimální řešení pomocí
dynamického programování, ale obecně je řešení tohoto problému obtížné.

Lineární program: Označme x1 jako počet malých balení, x2 jako počet střed-
ních balení a x3 jako počet velkých balení, které zakoupíme. Naším cílem je maxi-
malizovat celkový počet nuget, které zakoupíme, tedy hodnotu 6x1 + 9x2 + 20x3.
Musíme dodržet omezení, že celková kupní cena nesmí překročit náš rozpočet –
to znamená, že (v centech, aby všechna čísla byla celá) musí platit následující:
200x1 + 290x2 + 610x3 ≤ 3200.

Praktické řešení: Náš lineární program je zapsán v syntaxi, které rozumí řešič
lp_solve, takto:

max: 6x_1 + 9x_2 + 20x_3;
200x_1 + 290x_2 + 610x_3 <= 3200;
int x_1, x_2, x_3;

14



Když požádáme lp_solve o řešení tohoto programu, dostaneme následující
výstup:

Value of objective function: 102.00000000

Actual values of the variables:
x_1 1
x_2 4
x_3 3

Zjistili jsme, že můžeme získat až 102 nugetů, když koupíme 1 malé, 4 střední a
3 velká balení. Celková cena nákupu je 31,90, takže na konci budeme mít 102 nugetů
a 10 centů nazbyt.

Výběr řešiče
Pro tento studijní text jsme vybrali jeden konkrétní řešič: lp_solve. V řešeních

příkladů používáme syntaxi, kterou tento řešič rozumí.
Na adrese https://oi.sk/apps/ilp/ najdete několik různých návodů, který řešič

zvolit a jak jej použít k řešení ILP problémů v závislosti na vašem preferovaném
operačním systému a programovacím jazyce. Pro domácí kolo si také na internetu
můžete najít libovolný jiný řešič a použít ten, pokud se vám náš výběr nelíbí.

Příklad: Sudoku
Někdy místo optimalizace (hledání nejlepšího řešení z mnoha) nás může zajímat

pouze nalezení jakéhokoli platného řešení nebo rozhodnutí, zda vůbec nějaké platné
řešení existuje. Samozřejmě můžeme i k řešení takových problémů použít také řešič
ILP: stačí mu nedat žádný cíl (nebo mu například dát cíl maximalizovat hodnotu
výrazu „0ÿ).

Podívejme se na známý logický problém: Sudoku. V tomto problému je cílem
vyplnit tabulku 9×9 čísly od 1 do 9 tak, aby každý řádek, sloupec a „velkýÿ čtverec
3× 3 obsahoval každé číslo od 1 do 9 právě jednou.

V tomto příkladu ukážeme, jak můžeme formulovat pravidla sudoku jako ILP.
Zdálo by se, že bychom potřebovali 81 proměnných: pro každý čtverec tabulky jednu
proměnnou reprezentující hodnotu, která by v něm měla být. A ano, to je jeden způ-
sob, jak formulovat sudoku jako ILP, ale to necháme na později. V tomto příkladu
použijeme jiný přístup: použijeme 9× 9× 9 booleovských (tj. logických nebo binár-
ních) proměnných. Proměnná xi,j,k bude 1, pokud má být hodnota k na souřadnicích
(i, j), nebo 0, pokud tam hodnota k být nemá.

Podívejme se nyní, jak by mohly vypadat všechny pravidla sudoku, pokud by
byly zapsány jako lineární rovnice a nerovnice.

• V každé buňce je přesně jedno číslo. Pro každé i a j tedy platí podmínka

xi,j,1 + xi,j,2 + · · ·+ xi,j,9 = 1.

• Každé číslo se v každém řádku objevuje přesně jednou. Pro každé i a k
tedy platí podmínka

xi,1,k + xi,2,k + · · ·+ xi,9,k = 1.

15

https://oi.sk/apps/ilp/


• Pro každý sloupec a každý čtverec platí analogické podmínky jako pro
řádky.

Pokud nyní chceme vyřešit konkrétní sudoku pomocí lp_solve, postupujeme
následovně:

• Vygenerujeme (např. pomocí jednoduchého programu napsaného v běž-
ném programovacím jazyce) všechny výše uvedené podmínky představu-
jící obecná pravidla sudoku.
• Přidáme informaci, že všechny xi,j,k jsou booleovské proměnné. Toho do-

sáhneme přidáním podmínky xi,j,k ≤ 1 ke každé z nich. Proměnné, které
mohou nabývat pouze hodnot 0 a 1, jsou však v modelování problémů
tak běžné, že pravděpodobně každý řešitel bude mít speciální syntaxi pro
přímé deklarování takových proměnných. Například v lp_solve stačí de-
klarovat takové proměnné jako bin místo int.
• Přidáme podmínky popisující konkrétní úkol, který se snažíme vyřešit.

Například pokud máme číslo 7 již specifikované v prvním řádku a třetím
sloupci úkolu, přidáme podmínku x1,3,7 = 1.

Příklad: Sudoku podruhé
Jak by vypadalo modelování sudoku, kdybychom chtěli použít proměnnou vi,j

pro každou buňku, jejíž hodnota by přímo odpovídala hodnotě nalezené v příslušné
buňce? Je zřejmé, že potřebujeme podmínky vi,j ≥ 1 a vi,j ≤ 9. Kromě těchto
podmínek by stačilo přidat podmínky, které stanoví, že některé páry buněk nesmí
mít stejnou hodnotu. Budeme potřebovat poměrně dost takových podmínek: jednu
pro každý pár buněk ve stejném řádku, ve stejném sloupci a ve stejném čtverci 3×3.
Například pro dvě pole (i, x) a (i, y) v řádku i potřebujeme podmínku vi,x 6= vi,y.
Zde však narážíme na problém: tato podmínka nemá žádnou z povolených forem a
nemůžeme ji přímo vyjádřit pomocí povolených podmínek.

Požadovanou podmínku můžeme zapsat jako logické OR dvou podmínek: musí
platit buď vi,x < xi,y, nebo vi,x > vi,y. Jelikož všechna vi,j jsou celá čísla, můžeme
tyto podmínky upravit do povolené formy: musí platit buď vi,x ≤ vi,y − 1, nebo
vi,x ≥ vi,y + 1.

To však stále není v pořádku: v ILP musí být všechny podmínky splněny sou-
časně. To odpovídá logickému and, nikoli logickému or. Co s tím můžeme dělat?

Můžeme použít malý trik. Zavedeme novou binární proměnnou r (správně
bychom ji měli nazvat například ri,x,i,y, protože budeme potřebovat jednu novou
proměnnou pro každou dvojici proměnných, které by neměly být stejné, pro lepší
čitelnost ale indexy vynechme). Hodnota r nám řekne, zda by měla být menší první
nebo druhá z hodnot v. Zvažme nyní následující dvě podmínky:

vi,x − vi,y ≥ 1− 10r

vi,y − vi,x ≥ 1− 10(1− r) = 10r − 9

Pokud r = 0, dostaneme podmínky vi,x − vi,y ≥ 1 a vi,y − vi,x ≥ −9. První z nich
říká, že vi,x > vi,y a druhá je triviálně splněna pro libovolné vi,x, vi,y ∈ {1, 2, . . . , 9}

16



(konstantu 10 jsme zvolili tak, aby toto platilo, využíváme tedy skutečnosti, že známe
rozsah hodnot, kterých mohou vi,x a vi,y nabývat).

Naopak, pokud zvolíme r = 1, dostaneme jednu triviálně splněnou podmínku
a jednu, která říká, že vi,x < vi,y. Přidáním této nové proměnné r a dvou výše
uvedených podmínek jsme dosáhli toho, co jsme chtěli: pro libovolné vi,x 6= vi,y
můžeme splnit obě tyto podmínky, zatímco pro vi,x = vi,y není možné splnit obě
najednou.

Příklad: Co ve formalismu ILP nevyjádříme
Máme letadlo, se kterým chceme letět 1000 km z jednoho letiště na druhé.

V rámci povolených rozsahů odpovídajících modelu letadla můžeme zvolit letovou
hladinu h (výšku v km, ve které budeme létat, v rozmezí 10 až 13 km) a letovou
rychlost v (v km/h, v rozmezí 600 až 900 km/h). Chtěli bychom minimalizovat
náklady na let, tj. spotřebu paliva.

Toto lze zapsat pomocí vhodných vzorců jako optimalizační problém. Ve velmi
zjednodušené podobě by to mohlo vypadat nějak takto: Doba letu bude 1000/v.
Pokud letíme ve výšce h, optimální rychlost vzhledem k odporu vzduchu je vopt(h) =
540 + 30h. Výkon motoru je nejlepší ve výšce h = 11,5 km. Odchylka od těchto
parametrů zvyšuje spotřebu paliva, ale může nás dostat k cíli rychleji. Spotřeba
paliva (v kg/h) lze proto vyjádřit rovnicí 2000 + 200(h− 11,5)2+ 0,05(v− vopt(h))2.
Celková spotřeba paliva je součinem této hodnoty a doby letu.

Ačkoli se jedná o přesné matematické vyjádření optimalizačního problému, je
zde jeden háček: omezení pro h a v jsou lineární, ale funkce, jejíž hodnotu se snažíme
optimalizovat, není lineární funkcí proměnných h a v. Řešič ILP nám proto s takto
konkrétně zformulovaným problémem nepomůže.

Pro názornost dodejme, že ani mnohem jednodušší výraz h · v není lineární,
protože je to součin dvou proměnných.

17



Knihovna základních algoritmů
Pokud ve svém řešení teoretické úlohy chcete použít nějaký základní algoritmus,

jako třeba binární vyhledávání v uspořádaném poli, nemusíte ho detailně popisovat.
Někdy ale nemusí být jasné, které algoritmy jsou „dostatečně základníÿ.

Uvádíme proto seznam algoritmů a datových struktur, které v MO-P pova-
žujeme za natolik známé, že se na ně v řešení stačí odkázat a není potřeba uvádět
detaily. Pokud si algoritmus potřebujete nějak přizpůsobit, stačí popsat pouze změny
od základní verze.

Ostatní algoritmy je potřeba popsat celé.

Matematika

Euklidův algoritmus

• Nalezení největšího společného dělitele čísel x, y
• Čas O(log x+ log y)

Eratosthénovo síto

• Nalezení prvočísel od 2 do n
• Čas O(n log log n)

Faktorizace

• Rozklad čísla n na součin prvočísel zkoušením dělitelů až po
√
n

• Čas O(
√
n)

Posloupnosti
Označme n délku posloupnosti.

Merge sort

• Třídění sléváním
• Čas O(n log n)

Bucket sort

• Přihrádkové třídění
• Čas O(n+ r), kde n je počet prvků a r je jejich rozsah

Binární vyhledávání

• Nalezení prvku x v setříděné posloupnosti, případně největšího prvku ≤ x
• Čas O(log n)

Grafy
Označme n počet vrcholů grafu a m počet jeho hran.

Prohledávání do hloubky

• Čas O(n+m)

18



Prohledávání do šířky

• Nalezení nejkratší cesty ze startu do všech vrcholů v neohodnoceném grafu
• Čas O(n+m)

Dijkstrův algoritmus

• Nalezení nejkratší cesty ze startu do všech vrcholů v ohodnoceném grafu
s nezápornými délkami hran
• Čas O(m+ n log n)

Bellman-Fordův algoritmus

• Nalezení nejkratší cesty ze startu do všech vrcholů v ohodnoceném grafu
• Čas O(nm)

Floydův-Warshallův algoritmus

• Nalezení nejkratší cesty z každého do každého vrcholu v ohodnoceném
grafu
• Čas O(n3)

Jarníkův algoritmus

• Nalezení minimální kostry pomocí řezů a haldy
• Čas O(m+ n log n)

Kruskalův algoritmus

• Nalezení minimální kostry pomocí Disjoint set union
• Čas O(m log n)

Topologické uspořádání

• Uspořádání všech vrcholů orientovaného acyklického grafu tak, aby hrany
vedly po směru uspořádání
• Čas O(n+m)

Geometrie

Základy

• Vzdálenost dvou bodů (čas O(1))
• Vzdálenost bodu a přímky (čas O(1))
• Průnik přímek, úhly jimi svírané (čas O(1))
• Obsah mnohoúhelníku (čas O(n), kde n je počet vrcholů)

Konvexní obal

• Nalezení konvexního obalu n bodů
• Čas O(n log n), případně O(n) s již seřazenými body

19



Datové struktury

U datových struktur uvádíme operace, které podporují, s jejich složitostmi.

Fronta

• Enqueue: Přidání prvku na konec v O(1)
• Dequeue: Odebrání prvku ze začátku v O(1)

Zásobník

• Push: Přidání prvku na konec v O(1)
• Pop: Odebrání prvku z konce v O(1)

Nafukovací pole

• Append: Přidání prvku v amortizovaně O(1)

Prefixové součty

• Build: Vybudování v O(n)
• Query: Dotaz na součet intervalu v O(1)

2D prefixové součty

• Build: Vybudování v O(nm), kde n a m jsou strany mřížky
• Query: Dotaz na součet obdélníka v O(1)

Vyhledávací strom

• Reprezentace množiny prvků, které umíme porovnávat.
• Find: Nalezení pozice daného prvku, případné zahlášení jeho neexistence

v O(log n)
• Insert: Přidání prvku v O(log n)
• Delete: Smazání prvku v O(log n)

Písmenkový strom (Trie)

• Reprezentace množiny řetězců nad konstantně velkou abecedou.
• Find: Zjištění, zdali je slovo ve stromě v O(`), kde ` je délka slova
• Insert: Přidání slova v O(`)
• Delete: Smazání slova v O(`)

Binární halda

• Min: Vrácení minima v O(1)
• ExtractMin: Odstranění minima v O(log n)
• Insert: Přidání prvku v O(log n)
• Delete: Smazání prvku v O(log n), známe-li jeho pozici v haldě

20



Disjoint set union

• Find: Nalezení reprezentanta množiny obsahující daný vrchol v amorti-
zovaně O(α(n)), kde α je inverzní Ackermannova funkce, která sice roste
do nekonečna, ale mnohem pomaleji než logaritmus.
• Union: Sjednocení dvou množin obsahujících vrcholy u a v v amortizovaně
O(α(n))

Intervalový strom (s línou aktualizací)

• Pro zvolenou asociativní operaci (minimum, maximum, součet, . . .) a po-
sloupnost prvků x1, . . . , xn
• Build: Vybudování v O(n)
• Query: Určení hodnoty operace provedené na všechny prvky s indexy v

daném intervalu v O(log n)
• UpdatePoint: Aktualizace prvku v O(log n)
• Je-li operace minimum, maximum či součet, můžete dále bez popisu použí-

vat i operaci UpdateRange: Ke všem hodnotám s indexy v daném intervalu
přičte zadané číslo, pracuje v čase O(log n).
• Potřebuje-li vaše řešení operaci UpdateRange v jiných situacích (jiná aso-

ciativní operace, jiný druh změny hodnot na intervalu), musíte vysvětlit,
jak ji implementujete.

21


